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π
control 
policy

Agent Environmentac2on

observa2on

π̄✓
verified 
policypolicy execu2on

⨂π̄✓

ℙπ̄✓(Fall) ≤ 0.1ℙπ̄✓(Success) ≥ 0.9 ;
Formal guarantees

⨂ π

policy execu2on ℙπ(Fall) = ? ℙπ(Success) = ?
No guarantee

• Unknown environment 

• Con;nuous state/ac;on spaces

• Full knowledge of the model of the interac;on 

• Exhaus;ve explora;on of the model 

• Sensi;ve to the state space explosion problem

Model Checking

ℳ
Abstrac2on

π̄Dis2lled Policy
ℳModel: : : ⇠

: : : ⇠

Property φ

e.g., LTL, PRCTL

Reinforcement Learning Policies with Formal Guarantees

? ℳ ⊗ π ⊧ φ



Markov Decision Processes

• State space  

• Ac;on space  

• Reward func;on  

• Probability transi;on func;on 
  

• Atomic proposi;ons  and 
labelling func;on  

𝒮
𝒜

ℛ : 𝒮 × 𝒜 → ℝ

P(s′ ∣ s, a)
AP

ℓ : 𝒮 → 2AP

3

ℳ

s
b

ℛ(s, a)

{goal}

{failure}

P(s′ ∣ s, a)

a

• Policies prescribe which ac;on to choose at each step: ,  

• Value func;ons: 

1. Discounted return:   

2. ProperAes :  ; e.g., 

π : 𝒮 → Δ(𝒜) at ∼ π( ⋅ ∣ st)

Vπ (s) = 𝔼π[∑∞
t=0 γt ⋅ ℛ(st, at) ∣ s0 = s]

φ lim
γ→∞

Vπ (s, φ) = ℙπ (s ⊧ φ) ℙπ (s ⊧ the agent reaches the goal)
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Bisimulation

 is a stochas2c bisimula2on iff for all , ,  

                and          

B ∈ 𝒮2 s1, s2 ∈ 𝒮 a ∈ 𝒜 T ∈ 𝒮/B
ℓ(s1) = ℓ(s2) ℛ(s1, a) = ℛ(s2, a) P(T ∣ s1, a) = P(T ∣ s2, a)
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• Behavioral equivalence between states 
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๏  All or nothing: two states nearly iden2cal with slight numerical difference  are ϵ ≠
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Bisimulation distance
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Con2nuous-spaces MDP 

ℳ = ⟨𝒮, 𝒜, ℛ, P, ℓ⟩

Discrete latent MDP 

ℳ = ⟨𝒮, 𝒜, ℛ, P, ℓ⟩
• For policy ,  , and formal logic :π γ ∈ [0,1[ ℒ

➡ Bisimula2on distance: largest behavioral difference (de Alfaro et. al, 2003; Desharnais et. al, 2004)

d̃π (s1, s2) = sup
φ ∈ ℒγ

Vπ (s1, φ) − Vπ (s2, φ) ∀s1, s2 ∈ 𝒮

➡ Kernel is bisimilarity: d̃π (s1, s2) = 0 ⟺ s1 ∼ s2

Take the values of the {event / specifica2on / property} 
 leading to the largest difference

s̄
ā

s̄0

equivalent?

state embedding

action embedding

�(s) = s̄

 (s̄, ā) = a

distance ?



Latent Flow

Execu2on of a latent policy  in the original modelπ̄
• Latent policy , sta;onary distribu;on  

 

 

• Abstrac2on quality:   

• Representa2on quality: for all  such that                     

    

π ξπ

L ξπ
P = 𝔼s,a∼ξπ

WdS (ϕP ( ⋅ ∣ s, a), P ( ⋅ ∣ ϕ(s), a))
Lξπ

ℛ = 𝔼s,a∼ξπ
ℛ (s, a) − ℛ (ϕ(s), a)

𝔼s∼ξπ
d̃π̄ (s, ϕ(s)) ≤

Lξπ
ℛ+γL ξπP
1 − γ

s1, s2 ∈ 𝒮 ϕ(s1) = ϕ(s2)

d̃π̄ (s1, s2) ≤ ( Lξπ
ℛ+γL ξπP
1 − γ ) ⋅ (ξ−1

π̄ (s1) + ξ−1
π̄ (s2))
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s s̄�

ā

⇡̄

a

s̄?s0

P̄P

s̄0
�

 

M M

R(s, a) R(s̄, ā)

⇠⇡̄

Execu2on of a latent policy  in the original model: Local Lossesπ̄

L ξπ
P

Lξπ
ℛ
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⇠⇡̄

Execu2on of a latent policy  in the original model: Local Lossesπ̄

L ξπ
P
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• Latent policy , sta;onary distribu;on  

 

 

• Abstrac2on quality:  

• Representa2on quality: for all  such that                     

   

• PAC scheme from samples: let trace  ,  and 

: 

    and    

Then,  with probability 

π ξπ

L ξπ
P = 𝔼s,a∼ξπ

WdS (ϕP ( ⋅ ∣ s, a), P ( ⋅ ∣ ϕ(s), a))
Lξπ

ℛ = 𝔼s,a∼ξπ
ℛ (s, a) − ℛ (ϕ(s), a)

𝔼s∼ξπ
Vπ̄(s) − V̄π̄(s) ≤

Lξπ
ℛ+γL ξπP
1 − γ

s1, s2 ∈ 𝒮 ϕ(s1) = ϕ(s2)

Vπ̄(s1) − Vπ̄(s2) ≤ ( Lξπ
ℛ+γL ξπP
1 − γ ) ⋅ (ξ−1

π̄ (s1) + ξ−1
π̄ (s2))

⟨s0:T, a0:T−1, r0:T−1⟩ ∼ ξπ ϵ, δ ∈ ]0,1[

T ≥ ⌈−log (δ/4)
2ϵ2 ⌉

L̂ξπ
ℛ = 1

T

T−1

∑
t=0

rt − ℛ (ϕ(st), at) L̂ξπ
P = 1

T

T−1

∑
t=0

[1 − P (ϕ(st+1) ∣ ϕ(st), at)]
Lξπ

ℛ − L̂ξπ
ℛ ≤ ϵ  and ·Lξπ

P − L̂ξπ
P ≤ ϵ 1 − δ



Learning the Latent Space Model
• Train a behavioral model  by learning from traces produced by execu;ng the RL policy  in the 

original model  

• Goal: learn  so that we can retrieve: 

- The latent MDP   

- The embedding func;ons  

- A latent policy  dis;lled from  

• Minimize a discrepancy  between  and 

ξθ π
ℳ

ξθ

ℳ = ⟨𝒮, 𝒜, ℛ, P, ℓ⟩
ϕ, ψ

π̄ π
D ℳ ⊗ π ξθ

7

• Choose the Kullback-Leibler divergence 

ℳa

π ⊗
s′ , r

ξθ

⟨ si , ai , ri , s′ i ⟩N
i=1

: : : ⇠

: : : ⇠

ℳ
ϕ, ψmin

θ
DKL (ℳ ⊗ π, ξθ)

DKL (P, Q) = 𝔼x∼P [log ( P(x)
Q(x) )]

π̄
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π̄ π
D ℳ ⊗ π ξθ
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• Choose the Kullback-Leibler divergence 

ℳa

π ⊗
s′ , r

ξθ

⟨ si , ai , ri , s′ i ⟩N
i=1

: : : ⇠

: : : ⇠

ℳ
ϕ, ψmin

θ
DKL (ℳ ⊗ π, ξθ)

DKL (P, Q) = 𝔼x∼P [log ( P(x)
Q(x) )]

max
ι,θ

ELBO (ℳθ, ϕι, ψθ)≡ max
θ

𝔼τ∼ℳ⊗π [log ξθ (τ)] ≥
π̄

(Kingma & Welling, 2014; Hoffman et al., 2013)



Variational Markov Decision Process
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�«s; s 0 !

Bernoulli logits

: : : ⇠

G„ P G
„ (s 0 | s̄ 0)

P̄„
P̄„

`
s̄ 0 | s̄ ; a

´

R„
s̄ !
a! PR

„ (r | s̄ ; a)

s̄ 0 !

QA
«

s̄ !

a!
at

Categorical logits

: : : ⇠

: : :

0
1
0

0one-hot encoding

s̄ !
a!  „  „ (a | s̄ ; a)

: : :

:9
:2

:8

: : :

s̄ ; s̄ 0

1
0

1

training

evaluation
–! 0

continuous relaxation
with temperature –

binary encoding

Logistic
sampling

Gumble
softmax

training

evaluation
–! 0

: : :

:2
:8
:3

:1

s̄ !
a!

DKL

ı̄„ ı̄„ (a | s̄)s̄ !DKL

policy
distillation

max
ι,θ

ELBO (ℳθ, ϕι, ψθ) = − min
ι,θ

{Dι,θ + Rι,θ}

Veri�cation of Reinforcement Learning Policies via
Variational Abstraction of Markov Decision Processes

Florent Delgrange, Guillermo A. Pérez and Ann Nowé

Formal Veri�cation of RL Policies: The Big Picture

Unknown environment Environment Abstraction

Continuous-spaces MDP
M = hS ,A,P,R, �,AP, sIi

Discrete latent MDP
M =

�
S ,A,P,R, �,AP, sI

�

For policy � 2 �M, discount factor � 2 ]0,1[ and formal logic L,
• Bisimulation distance = largest behavioral di�erence

d̃�(s1, s2) = s�p
f2FL

�
(�)
|f (s1) � f (s2)| �s1, s2 2 S

• FL
�
(�): logical family of functional expressions de�ning the semantic of L for �

• Kernel is bisimilarity: d̃�(s1, s2) = 0 () s1 ⇠ s2
• L (i) based on state labels d̃�

�
(ii) including rewards d̃R

�

���V
�
(s1) � V�

(s2)
���  d̃R

�
(s1, s2)

1� �

PAC bounds for latent MDP local losses
• Add areset in A!M ergodic with stationary distribution �
• s,a ⇠ �� ⌘ s ⇠ ��, a ⇠ �(· | �(s)), then L��R  L̇��R and L��P  L̇

��
P , with

L��R = E
s,a⇠��

��R(s,a) � R(�(s),a)
�� L��P = E

s,a⇠��
WdS

�
�P(· | s,a),P(· | �(s),a)

�

L̇��R = E
s,a,s0⇠��

��R�
s,a, s0

�
� R(�(s),a)

�� L̇��P = E
s,a,s0⇠��

WdS

�
�

�
· | s0

�
,P(· | �(s),a)

�

• From samples: trace �̂ = hs0:T,a0:T�1, r0:T�1, ·i of length T �
�
� log(�/4)

2�2

�
and �, � 2 ]0,1[ ,

L̂��R =
1

T

T�1�
t=0

��rt � R(�(st),at)
�� L̂��P =

1

T

T�1�
t=0

�
1� P(�(st+1) | �(st),at)

�
,

Then,
��L̇��R � L̂��R

��  � and
��L̇��P � L̂��P

��  � with at least probability 1� �

Bisimulation bounds
• Expected bisimulation distance:

E
s⇠��

d̃R
�
(s,�(s))  L��R + �L��P

K�
R

1� �K�
P
,

E
s⇠��

d̃�
�
(s,�(s)) 

�L��P
1� �

• Abstraction qualiy: �s1, s2 s.t. �(s1) = �(s2),

d̃R
�
(s1, s2) 

�
L��R + �L��P

K�
R

1� �K�
P

� �
��1
�
(s1) + ��1

�
(s2)

�
,

d̃�
�
(s1, s2) 

�L��P
1� �

�
��1
�
(s1) + ��1

�
(s2)

�
.

D�,� = � E
s,a,r,s0⇠��

s,s0⇠��(·|s,s0)
a⇠QA

�
(·|s,a)

�
logPG

�

�
s0 | s0

�
+

log��(a | s,a)+
logPR

�
(r | s,a)

�
else, and

R�,� = E
s,a,s0⇠��
s⇠��(·|s)

a⇠QA
�
(·|s,a)

�
DKL

�
��

�
· | s0

�
k P�(· | s,a)

�
+

DKL

�
QA

�
(· | s,a) k ��(· | s)

��

Learning the environment abstraction through Variational MDP

m�x
�,�

ELBO
�
M�,��,��

�
= �min

�,�

�
D�,� + R�,�

�
,

D�,� = � E
s,a,r,s0⇠��

E
s,s0⇠��(·|s,s0)
a⇠QA

�
(·|s,a)

�
log��(a | s,a) + logPG

�

�
s0 | s0

�
+ logPR

�
(r | s,a)

�

R�,� = E
s,a,s0⇠��

E
s⇠��(·|s)

a⇠QA
�
(·|s,a)

�
DKL

�
��

�
· | s0

�
k P�(· | s,a)

�
+ DKL

�
QA

�
(· | s,a) k ��(· | s)

��

Evaluation
Evaluation with di�erent hyper parameters (colors)

Environment ELBO
Latent compressed policy ��:

Average rewards

CartPole
�: DQN

Pendulum
�: SAC

LunarLander
�: SAC

Next steps: Importance sampling, synthesis in the loop, Wasserstein Autoencoders, ...

𝒮

𝒜
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• Stochas;c embedding and reward func;ons
➡ Determinized a^er the learning process

• Varia;onal proxies to local losses
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Evaluation
Evaluation with di�erent hyper parameters (colors)

Environment ELBO
Latent compressed policy ��:

Average rewards
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Pendulum
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LunarLander
�: SAC

Next steps: Importance sampling, synthesis in the loop, Wasserstein Autoencoders, ...

𝒮

𝒜

L ξπ
P = 𝔼s,a∼ξπ

WdS (ϕP ( ⋅ ∣ s, a), P ( ⋅ ∣ ϕ(s), a))
≤ 𝔼s,a,s′ ∼ξπ

WdS (ϕ ( ⋅ ∣ s′ ), P ( ⋅ ∣ ϕ(s), a))

DKL

Log-likelihood of rewards



Variational Markov Decision Process

8

max
ι,θ

ELBO (ℳθ, ϕι, ψθ) = − min
ι,θ

{Dι,θ + Rι,θ}

• Stochas;c embedding and reward func;ons
➡ Determinized a^er the learning process

• Varia;onal proxies to local losses
➡ Posterior collapse
➡ fix: prioriAzed replay buffers, entropy 

regularizaAon, annealing scheme

Veri�cation of Reinforcement Learning Policies via
Variational Abstraction of Markov Decision Processes

Florent Delgrange, Guillermo A. Pérez and Ann Nowé

Formal Veri�cation of RL Policies: The Big Picture

Unknown environment Environment Abstraction

Continuous-spaces MDP
M = hS ,A,P,R, �,AP, sIi

Discrete latent MDP
M =

�
S ,A,P,R, �,AP, sI

�

For policy � 2 �M, discount factor � 2 ]0,1[ and formal logic L,
• Bisimulation distance = largest behavioral di�erence

d̃�(s1, s2) = s�p
f2FL

�
(�)
|f (s1) � f (s2)| �s1, s2 2 S

• FL
�
(�): logical family of functional expressions de�ning the semantic of L for �

• Kernel is bisimilarity: d̃�(s1, s2) = 0 () s1 ⇠ s2
• L (i) based on state labels d̃�

�
(ii) including rewards d̃R

�

���V
�
(s1) � V�

(s2)
���  d̃R

�
(s1, s2)

1� �

PAC bounds for latent MDP local losses
• Add areset in A!M ergodic with stationary distribution �
• s,a ⇠ �� ⌘ s ⇠ ��, a ⇠ �(· | �(s)), then L��R  L̇��R and L��P  L̇

��
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L��R = E
s,a⇠��

��R(s,a) � R(�(s),a)
�� L��P = E

s,a⇠��
WdS

�
�P(· | s,a),P(· | �(s),a)

�

L̇��R = E
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��R�
s,a, s0

�
� R(�(s),a)

�� L̇��P = E
s,a,s0⇠��

WdS

�
�

�
· | s0

�
,P(· | �(s),a)

�

• From samples: trace �̂ = hs0:T,a0:T�1, r0:T�1, ·i of length T �
�
� log(�/4)

2�2

�
and �, � 2 ]0,1[ ,

L̂��R =
1

T

T�1�
t=0

��rt � R(�(st),at)
�� L̂��P =

1

T

T�1�
t=0

�
1� P(�(st+1) | �(st),at)

�
,

Then,
��L̇��R � L̂��R

��  � and
��L̇��P � L̂��P

��  � with at least probability 1� �

Bisimulation bounds
• Expected bisimulation distance:

E
s⇠��

d̃R
�
(s,�(s))  L��R + �L��P

K�
R

1� �K�
P
,

E
s⇠��

d̃�
�
(s,�(s)) 

�L��P
1� �

• Abstraction qualiy: �s1, s2 s.t. �(s1) = �(s2),

d̃R
�
(s1, s2) 

�
L��R + �L��P

K�
R

1� �K�
P

� �
��1
�
(s1) + ��1

�
(s2)

�
,

d̃�
�
(s1, s2) 

�L��P
1� �

�
��1
�
(s1) + ��1

�
(s2)

�
.
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s0 | s0
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+
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�
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�
else, and
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s⇠��(·|s)
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�
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�
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�
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Next steps: Importance sampling, synthesis in the loop, Wasserstein Autoencoders, ...

L ξπ
P = 𝔼s,a∼ξπ

WdS (ϕP ( ⋅ ∣ s, a), P ( ⋅ ∣ ϕ(s), a))
≤ 𝔼s,a,s′ ∼ξπ

WdS (ϕ ( ⋅ ∣ s′ ), P ( ⋅ ∣ ϕ(s), a))

DKL ϕιs′ →s, s̄
ℳ



Cartpole MountainCar Acrobot Pendulum LunarLander

VAE-MDP: Evaluation

9

Dis2lla2on: performance of π̄

Handling posterior collapse slows down the learning process



Learning the Latent Space Model
• Train a behavioral model  by learning from traces produced by execu;ng the RL policy  in the 

original model  

• Goal: learn  so that we can retrieve: 

- The latent MDP   

- The embedding func;ons  

- A latent policy  dis;lled from  

• Minimize a discrepancy  between  and 

ξθ π
ℳ

ξθ

ℳ = ⟨𝒮, 𝒜, ℛ, P, ℓ⟩
ϕ, ψ

π̄ π
D ℳ ⊗ π ξθ

10

ℳa

π ⊗
s′ , r

ξθ

⟨ si , ai , ri , s′ i ⟩N
i=1

: : : ⇠

: : : ⇠

ℳ
ϕ, ψ
π̄

• Choose the Wasserstein Distance 
W (P, Q) = inf

λ∈Λ(P, Q)
𝔼x,y∼λ d (x, y) = sup

∥f∥≤1
𝔼x∼P f (x) − 𝔼y∼Q f (y)

min
θ

W (ℳ ⊗ π, ξθ)



Learning the Latent Space Model
• Train a behavioral model  by learning from traces produced by execu;ng the RL policy  in the 

original model  

• Goal: learn  so that we can retrieve: 

- The latent MDP   

- The embedding func;ons  

- A latent policy  dis;lled from  

• Minimize a discrepancy  between  and 

ξθ π
ℳ

ξθ

ℳ = ⟨𝒮, 𝒜, ℛ, P, ℓ⟩
ϕ, ψ

π̄ π
D ℳ ⊗ π ξθ

10

ℳa

π ⊗
s′ , r

ξθ

⟨ si , ai , ri , s′ i ⟩N
i=1

: : : ⇠

: : : ⇠

ℳ
ϕ, ψ
π̄

• Choose the Wasserstein Distance 
W (P, Q) = inf

λ∈Λ(P, Q)
𝔼x,y∼λ d (x, y) = sup

∥f∥≤1
𝔼x∼P f (x) − 𝔼y∼Q f (y)

min 𝔼s,a,s′ ∼ξπ
𝔼s̄,ā,s̄′ ∼ϕ( ⋅ ∣ s, a, s′ ) [d𝒮 (s, ς (s̄)) + d𝒜 (a, ψ (s̄, ā)) + d𝒮 (s′ , ς (s̄′ ))]+Lξπ

ℛ +β (𝒲ξπ
+ L ξπ

P )

min
θ

W (ℳ ⊗ π, ξθ)
≤



Wasserstein Auto-encoded Markov Decision Process

•  

•

𝒲ξπ
= max

∥Γξ∥≤1
𝔼s,a∼ξπ

𝔼ā∼ϕ𝒜( ⋅ ∣ ϕ(s), a)𝔼s̄′ ∼P( ⋅ ∣ s̄, ā) Γξ (ϕ (s), ā, s̄′ ) − 𝔼s̄,ā,s̄′ ∼ξπ̄
Γξ (s̄, ā, s̄′ )

L ξπ
P = max

∥ΓP∥≤1
𝔼s,a,s′ ∼ξπ

𝔼s̄,ā,s̄′ ∼ϕ( ⋅ ∣ s, a, s′ ) [ΓP (s, a, s̄, ā, s̄′ ) − 𝔼s̄⋆∼P( ⋅ ∣ s̄, ā) ΓP (s, a, s̄, ā, s̄⋆)] 11
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ℛ +β (𝒲ξπ
+ L ξπ

P )



Wasserstein Auto-encoded Markov Decision Process
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+ L ξπ
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Mini-max learning procedure
Discriminators dis2nguish between latent 
variables that can be generated from the 
latent MDP and those that cannot.



Evaluation
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Dis2lla2on: performance of π̄

Local Losses (PAC evalua2on)

WAE-MDP Losses (Reconstruc2on Loss + Regularizers)



Evaluation
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CartPole MountainCar Acrobot Pendulum LunarLander

φ = ¬𝖱𝖾𝗌𝖾𝗍 𝒰 ¬𝖲𝖺𝖿𝖾 φ = ¬𝖦𝗈𝖺𝗅 𝒰 𝖱𝖾𝗌𝖾𝗍 φ = ◊(¬𝖲𝖺𝖿𝖾 ∧ ◯𝖱𝖾𝗌𝖾𝗍) φ = ¬𝖲𝖺𝖿𝖾𝖫𝖺𝗇𝖽𝗂𝗇𝗀 𝒰 𝖱𝖾𝗌𝖾𝗍φ = ¬𝖦𝗈𝖺𝗅 𝒰 𝖱𝖾𝗌𝖾𝗍

Vφ
π̄θ (s̄I) = 0.032 Vφ

π̄θ (s̄I) = 0 Vφ
π̄θ (s̄I) = 0.0022 Vφ

π̄θ (s̄I) = 0.0702Vφ
π̄θ (s̄I) = 0.037

Time-to-failure proper2es (lower is beaer)



Conclusion

• (V-, W)AE-MDPs, frameworks for learning discrete latent models of unknown conAnuous-
spaces environment with bisimulaAon guarantees

‣ Enable the verificaAon of Deep RL policies by dis2lling the agent behaviours  over a 
tractable, simpler, bisimilar latent space model 

‣ The guarantees obtained by model checking the dis;lled policy in the latent model can be 
libed to the real environment thanks to the bisimulaAon guarantees

‣ WAE-MDPs overcome the limits of VAEs by directly incorpora;ng bisimula;on metrics in its 
op;misa;on func;on

14

WAE-MDPs distill original RL policies up to 10 times faster than VAE-MDPs 
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THE WASSERSTEIN BELIEVER
LEARNING BELIEF UPDATES FOR PARTIALLY OBSERVABLE ENVIRONMENTS
THROUGH RELIABLE LATENT SPACE MODELS

Raphael Avalos1 ˚ Florent Delgrange1,2 ˚

Ann Nowé1 : Guillermo A. Pérez2,3 : Diederik M. Roijers1,4 :
1 AI Lab, Vrije Universiteit Brussel (Belgium) 2 University of Antwerp (Belgium)
3 Flanders Make (Belgium) 4 City of Amsterdam (The Netherlands)
{raphael.avalos, florent.delgrange}@vub.be

ABSTRACT

Partially Observable Markov Decision Processes (POMDPs) are used to model
environments where the state cannot be perceived, necessitating reasoning based
on past observations and actions. However, remembering the full history is gener-
ally intractable due to the exponential growth in the history space. Maintaining a
probability distribution that models the belief over the current state can be used as
a sufficient statistic of the history, but its computation requires access to the model
of the environment and is often intractable. While SOTA algorithms use Recur-
rent Neural Networks to compress the observation-action history aiming to learn
a sufficient statistic, they lack guarantees of success and can lead to sub-optimal
policies. To overcome this, we propose the Wasserstein Belief Updater, an RL
algorithm that learns a latent model of the POMDP and an approximation of the
belief update under the assumption that the state is observable during training. Our
approach comes with theoretical guarantees on the quality of our approximation
ensuring that our latent beliefs allow for learning the optimal value function.

1 INTRODUCTION

Partially Observable Markov Decision Processes (POMDPs) define a powerful framework for mod-
eling decision-making in uncertain environments where the state is not fully observable. These
problems are common in many real-world applications, such as robotics (Lauri et al., 2023), and
recommendation systems (Wu et al., 2021). In contrast to Markov Decision Processes (MDPs), in a
POMDP the agent perceives an imperfect observation of the state that does not suffice as condition-
ing signal for an optimal policy. As such, optimal policies must take the entire interaction history
into account. As the space of possible histories scales exponentially in the length of the episode,
using histories to condition policies is generally intractable. An alternative is the notion of belief,
which is defined as a probability distribution over states based on the agent history. Beliefs are a
sufficient statistic of the history (Kaelbling et al., 1998) but the computation of their closed-form
expression require the access to a model of the environment and is in general intractable.

To overcome those challenges, SOTA algorithms compress the history into a fixed-size vector with
the help of Recurrent Neural Networks (RNNs) (Hausknecht & Stone, 2015). Nonetheless, this may
lead to information loss, resulting in suboptimal policies. To improve the likelihood of obtaining
a sufficient statistic, RNNs can be combined with regularization techniques, including generative
models (Chen et al., 2022; Hafner et al., 2019; 2021), particle filtering (Igl et al., 2018; Ma et al.,
2020), and predicting distant observations (Gregor et al., 2018; 2019). However, none of these tech-
niques guarantee that the representation of histories induced by RNNs is suitable for optimizing the
return. Additionally, many algorithms assume that beliefs are simple distributions (e.g., Gaussian),
which limits their applicability (Gregor et al., 2018; Lee et al., 2020; Hafner et al., 2021).

In this paper, we propose Wasserstein Belief Updater (WBU), a model-based reinforcement learning
(RL) algorithm for POMDPs that allows learning the belief space over the unobservable states.
Specifically, WBU learns an approximation of the belief update rule through a latent space model

˚ Both authors contributed equally to this research, alphabetic order. : Equal supervision.

1

Applica;on to POMDPs

Synthesis of Hierarchical Controllers Based on

Deep Reinforcement Learning Policies

Florent Delgrange1,2, Guy Avni3, Anna Lukina4, Christian Schilling5,
Ann Nowé1, and Guillermo A. Pérez2,6

1 AI Lab, Vrije Universiteit Brussel, Belgium
2 University of Antwerp, Belgium

3 University of Haifa, Israel
4 Delft University of Technology, The Netherlands

5 Aalborg University, Denmark
6 Flanders Make, Belgium

Abstract. We propose a novel approach to the problem of controller
design for environments modeled as Markov decision processes (MDPs).
Specifically, we consider a hierarchical MDP a graph with each vertex
populated by an MDP called a “room.” We first apply deep reinforcement
learning (DRL) to obtain low-level policies for each room, scaling to large
rooms of unknown structure. We then apply reactive synthesis to obtain
a high-level planner that chooses which low-level policy to execute in
each room. The central challenge in synthesizing the planner is the need
for modeling rooms. We address this challenge by developing a DRL
procedure to train concise “latent” policies together with PAC guarantees
on their performance. Unlike previous approaches, ours circumvents a
model distillation step. Our approach combats sparse rewards in DRL
and enables reusability of low-level policies. We demonstrate feasibility
in a case study involving agent navigation amid moving obstacles.

Keywords: Hierarchical control · Deep reinforcement learning · Reac-
tive synthesis · Reach-avoid properties · PAC guarantees · Latent policies.

1 Introduction

We consider the fundamental problem of constructing control policies for envi-
ronments modeled as Markov decision processes (MDPs). We are inspired by two
techniques with complementary benefits and drawbacks. The first is reinforce-
ment learning (RL) [52], where the designer chooses how rewards are issued for
actions, and control policies are trained to optimize rewards. Particularly, since
the introduction of deep RL (DRL) [41], we are witnessing successful training
of controllers in domains of increasing size, often surpassing human capabilities
in their quality. However, a notorious challenge of RL is training for tasks with
sparse rewards. For example, consider a robot obtaining a reward for exiting a
building. Since it is improbable that a random exploration reaches the exit, train-
ing is time-consuming and expensive, and often fails even in small environments.
Training is even harder when the building contains obstacles.
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