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Overview

Reinforcement Learning Policies with Formal Guarantees

Abstraction Model Checking

Agent action Environment : :
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— | | ' o Distilled Policy 1T
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observation

e.g., LTL, PRCTL
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contro| .. = 1 B ® verified
policy policy execution P .(Fall)y=" P (Success) =" P_,(Success)y >0.9; P-(Fall) <0.1 policy execution policy

K No guarantee J K Formal guarantees J
e Unknown environment e Full knowledge of the model of the interaction

. . e Exhaustive exploration of the model
e Continuous state/action spaces N ,
e Sensitive to the state space explosion problem 9



Markov Decision Processes
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e State space &

e Reward function £ : & X f — |

® Probability transition function

P(s' | s,a)

e Atomic propositions AP and

labelling function Z: & — 2AF

e Policies prescribe which action to choose at each step: 7: & — A(H),a, ~ n( - | s,)

® Value functions:

1. Discounted return: V_(s) =

ZZO }/t ) ‘%(Sp at) ‘ S50 = 98

T

2. Properties ¢: lim V_ (s, go) =P (s = go) ; e.g., P_(s F the agent reaches the goal)

y— 0



Bisimulation

T —— equivalent?
state embedding
O(s) =S
< action embedding
Y(5,a) = a
Continuous- Discrete latent MDP
spaces MDP
M={S, A, RB,P,L) M={(S,d,R,P,L)



Bisimulation

B € &7 is a stochastic bisimulation iff for all s, 5, € §,a € A, T € S/B
£(s)=70(s,)  R(s;,a) = AR(s,,a) and P(T|s,a) =P s,,a)

(Larsen and Skou 1989;

La rgeSt: A Givan, Dean, and Greig 2003)
e Behavioral equivalence between states .
equivalent?
e Compare two MDPs: take the disjoint >
union of their state Space: S state embedding
: : : o(s) =35
= Trajectory, values, and optimal policy | |
. action embedding
equivalence 0(5.9) — a
= For a given formal logic £, two bisimilar Continuous- S erete latent MOP
models satisfy the same set of spaces MDP
properties, i.e., o
M=(S,d,R,P,E) A= (S,d, %P7

= They behave the same



Bisimulation

B € 87 is a stochastic bisimulation-iff for all s, 5, € S,a € A, T € S/B
£(s;)=70(s,)  RA(s;,a) # A(sy,a)+e and  P(T|s,a) #P(T | s,,a)+e

L t. (Larsen and Skou 1989;
arges 5 Givan, Dean, and Greig 2003)

e Behavioral equivalence between states

e Compare two MDPs: take the disjoint

union of their state Space: S state embedding
] : ] A(s) =5
= Trajectory, values, and optimal policy | |
. action embedding
equivalence 0(5.9) — a
= For a given formal logic £, two bisimilar Continuous- S erete latent MOP
models satisfy the same set of spaces MDP
properties, i.e., o
M=(S,d, R,P,L) =S, d RPL)

= They behave the same
@ All or nothing: two states nearly identical with slight numerical difference ¢ are +



Bisimulation distance

Continuous-spaces MDP Discrete latent MDP

o distance ?
state embedding
¢(s) =5
action embedding
P(s,a) =a
M=(S, d RP,C) M =S, A4, RBP,E)

e For policy z, y € [0,1], and formal logic Z:

m» Bisimulation distance: largest behavioral difference (de Alfaro et. al, 2003; Desharnais et. al, 2004)

dﬂ (Sl’ S2) / ded A \ <S19 §0) -V (Sza QD) Vs, 8, € &

Take the values of the {event / specification / property]
leading to the largest difference

~/

= Kernel is bisimilarity: d (sl, 52) =0 &= s~



Latent Flow

Execution of a latent policy i in the original model: Local Losses

e Latent policy 7, stationary distribution &

M. e i Lé = [ES,JN%de(qu( N s,c—z),F(-\gb(s),c—z))

=
AS ¢ > g Lég — [Es,c_zfvfﬁ K (Sv C_Z) o @ <¢(S), 67) |
) ) Lff_l_ Lff
T ° Abstraction quality: [Es~§f dﬁ (S’ ¢(S)) = gi _ny
) w Z_L e Representation quality: for all 5;, s, € & such that ¢(s;) = ¢(s,)
<
) ng+;/L1§’_’ _ ~
Lff d; (S1,S2) < ' <§le (Sl) T 5’_’1 (S2)>
i : P 1 —vy
R(s,a)y=="""" R(s,a)
 / / / ’
_ —k
S >S5 - _ S
¢ Lfﬂ'
P



Latent Flow

Execution of a latent policy i in the original model: Local Losses

e Latent policy 7, stationary distribution &
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Latent Flow

Execution of a latent policy i in the original model: Local Losses

e Latent policy 7, stationary distribution &
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Learning the Latent Space Model

e Train a behavioral model &, by learning from traces produced by executing the RL policy & in the
original model

e Goal: learn &, so that we can retrieve:

- The latent MDP M = (S, A, R, P, )
- The embedding functions @,

- A latent policy 7z distilled from 7

e Minimize a discrepancy D between .// @ m and &,

m@in Dy, (/% & =, 59)

e Choose the Kullback-Leibler divergence

P()
Dy, (P,O) =E,_, |1
s (P-Q) P[Og(Qm)]




Learning the Latent Space Model

e Train a behavioral model &, by learning from traces produced by executing the RL policy & in the
original model

e Goal: learn &, so that we can retrieve:

- The latent MDP M = (S, A, R, P, )
- The embedding functions @,

- A latent policy 7z distilled from 7

e Minimize a discrepancy D between .// @ m and &,

m@in Dy, (/% & =, 59)

=max E__ /e, [log So (T)] > m%X ELBO (%9’ P l/j@)
0 -

e Choose the Kullback-Leibler divergence

P()
Dy, (P,O) =E,_, |1
s (P Q) P[Og(Qm)]

(Kingma & Welling, 2014; Hoffman et al., 2013)




Variational Markov Decision Process
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Variational Markov Decision Process

max ELBO (/% 9 @, 1/19) = —min {Dl,@ + Rz,e}
1,0 1,0
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Variational Markov Decision Process

max ELBO (y. §,.y,) = —min {D,y+ R,
1,0 L
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e Stochastic embedding and reward functions
= Determinized after the learning process

e Variational proxies to local losses
= Posterior collapse
= fix: prioritized replay buffers, entropy
regularization, annealing scheme




VAE-MDP: Evaluation

Distillation: performance of
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step 1e6 step 1e6 step 1e6 step 1e6 step 1e6

Handling posterior collapse slows down the learning process



Learning the Latent Space Model

e Train a behavioral model &, by learning from traces produced by executing the RL policy & in the
original model

e Goal: learn &, so that we can retrieve:

- The latent MDP M = (S, A, R, P, )
- The embedding functions @,

- A latent policy 7z distilled from 7

e Minimize a discrepancy D between .// @ m and &,

m@in W(% & , 59)

® Choose the Wasserstein Distance

W(P,0)= mt [E_ _,d(x,y)= = - [,
(P.0) = inf  Exwad(xy) = sup Ecp f00)=Eyo /() 1




Learning the Latent Space Model

e Train a behavioral model &, by learning from traces produced by executing the RL policy & in the
original model

e Goal: learn &, so that we can retrieve:

- The latent MDP M = (S, A, R, P, )
- The embedding functions @,

- A latent policy 7z distilled from 7

e Minimize a discrepancy D between .// @ m and &,

0

min W(% & , 59) ‘

<min kg, ; 5.4,5~p( - | 5.a,5) :dcy (S, G(f)) +d, (61, y (5, c_l)) + dg (S” g(E’)>:

® Choose the Wasserstein Distance

W(P,0)= mt [E_ _,d(x,y)= = - [,
(P.0) = inf  Exwad(xy) = sup Ecp f00)=Eyo /() 1




Wasserstein Auto-encoded Markov Decision Process
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Wasserstein Auto-encoded Markov Decision Process
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Evaluation

WAE-MDP Losses (Reconstruction Loss + Regularizers)

env = CartPole env = MountainCar env = Acrobot env = LunarLander env = Pendulum
3.0
3 1.00
0.6 1.0 25 Loss
@ 0.4 2 0.75 —— reconstruction
= 2. .
0.2 "o ’ 1 g 0.50 — L|§ (w)
' 1.5 — — We (W)
0.0 >~ 0.25
0.00 025 050 0.7 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 075 1.00 0 1 2 3 4
step 1e6 step 1e6 step 1e6 step 1e6 step 1e5
Local Losses (PAC evaluation)
0 env = CartPole env = MountainCar env = Acrobot env = LunarLander env = Pendulum
2 | _\/ W
S S —— WAE-MDP
@)
0 0.5 — VAE-MDP
2 Local loss
o ~ — L
O . O e - s e e b e e e SRS ESsmmosm—mmm e ———————— P
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 O 2 4 - [
step 16 step 1e6 step 16 step 16 step 1ed
Distillation: performance of r
env = CartPole env = MountainCar env = Acrobot env = LunarLander 1e3 env = Pendulum
200
- — WAE-MDP
E —— VAE-MDP
3 100 —— RL policy
22 Policy
@® -1.0 L
) -175 —— distiled
~140 500 b e original (DQN)
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0 2 S original (SAC)

12



Evaluation

CartPole MountainCar Acrobot Pendulum LunarLander

goal: [0]

Time-to-failure properties (lower is better)

@ = —Reset % —Safe @ = Goal Z Reset @ = Goal % Reset ¢ = {)(~Safe A(OReset) ¢ = —SafeLanding % Reset

Ve (5,) = 0.032 Ve (5;) =0 Ve (5;) = 0.0022 V¢ (5) =0.037  V? (5)=0.0702

13



Conclusion

WAE-MDPs distill original RL policies up to 10 times faster than VAE-MDPs

env = CartPole env = MountainCar env = Acrobot env = LunarLander 1e3 env = Pendulum
A

100

— WAE-MDP

—— VAE-MDP

—— RL policy
Policy

—— distiled

-5(( TR —————_. original (DQN)
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0 2 4 y
step 1e6 step 1e6 step 1e6 step 1e6 step 165 original (SAC)

avg. return

—

N

(@)
—
N
o

e (V-, W)AE-MDPs, frameworks for learning discrete latent models of unknown continuous-
spaces environment with bisimulation guarantees

» Enable the verification of Deep RL policies by distilling the agent behaviours over a
tractable, simpler, bisimilar latent space model

» The guarantees obtained by model checking the distilled policy in the latent model can be
lifted to the real environment thanks to the bisimulation guarantees

» WAE-MDPs overcome the limits of VAEs by directly incorporating bisimulation metrics in its

optimisation function
14



Further Work: Beyond Distillation

Application to POMDPs

Synthesis from RL components

Published as a conference paper at ICLR 2024

THE WASSERSTEIN BELIEVER
LEARNING BELIEF UPDATES FOR PARTIALLY OBSERVABLE ENVIRONMENTS
THROUGH RELIABLE LATENT SPACE MODELS

1% 1,2 %

Raphael Avalos Florent Delgrange
Ann Nowé' T Guillermo A. Pérez?2T Diederik M. Roijers™*1

1 AI Lab, Vrije Universiteit Brussel (Belgium) 2 University of Antwerp (Belgium)
3 Flanders Make (Belgium) * City of Amsterdam (The Netherlands)
{raphael.avalos, florent.delgrange}@vub.be

ABSTRACT

Partially Observable Markov Decision Processes (POMDPs) are used to model
environments where the state cannot be perceived, necessitating reasoning based
on past observations and actions. However, remembering the full history is gener-
ally intractable due to the exponential growth in the history space. Maintaining a
probability distribution that models the belief over the current state can be used as
a sufficient statistic of the history, but its computation requires access to the model
of the environment and is often intractable. While SOTA algorithms use Recur-
rent Neural Networks to compress the observation-action history aiming to learn
a sufficient statistic, they lack guarantees of success and can lead to sub-optimal
policies. To overcome this, we propose the Wasserstein Belief Updater, an RL
algorithm that learns a latent model of the POMDP and an approximation of the
belief update under the assumption that the state is observable during training. Our
approach comes with theoretical guarantees on the quality of our approximation
ensuring that our latent beliefs allow for learning the optimal value function.

I INTRODUCTION

Fartially Observable Markov Decision Processes (POMDPs) define a powerful framework for mod-
eling decision-making in uncertain environments where the state is not fully observable. These
problems are common in many real-world applications, such as robotics (Lauri et al., 2023), and
recommendation systems (Wu et al., 2021). In contrast to Markov Decision Processes (MDPs), in a
POMDP the agent perceives an imperfect observation of the state that does not suffice as condition-
ing signal for an optimal policy. As such, optimal policies must take the entire interaction history
into account. As the space of possible histories scales exponentially in the length of the episode,
us<ino hictories to condition nolicies 1< cenerallv intractable An alternative i< the notion of helief

&
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Synthesis of Hierarchical Controllers Based on
Deep Reinforcement Learning Policies

Florent Delgrange'?2, Guy Avni®, Anna Lukina*, Christian Schilling®,
Ann Nowé!, and Guillermo A. Pérez?°

1 AI Lab, Vrije Universiteit Brussel, Belgium
2 University of Antwerp, Belgium
3 University of Haifa, Israel
* Delft University of Technology, The Netherlands
® Aalborg University, Denmark
® Flanders Make, Belgium

Abstract. We propose a novel approach to the problem of controller
design for environments modeled as Markov decision processes (MDPs).
Specifically, we consider a hierarchical MDP a graph with each vertex
populated by an MDP called a “room.” We first apply deep reinforcement
learning (DRL) to obtain low-level policies for each room, scaling to large
rooms of unknown structure. We then apply reactive synthesis to obtain
a high-level planner that chooses which low-level policy to execute in
each room. The central challenge in synthesizing the planner is the need
for modeling rooms. We address this challenge by developing a DRL
procedure to train concise “latent” policies together with PAC guarantees
on their performance. Unlike previous approaches, ours circumvents a
model distillation step. Our approach combats sparse rewards in DRL
and enables reusability of low-level policies. We demonstrate feasibility
in a case study involving agent navigation amid moving obstacles.

Keywords: Hierarchical control - Deep reinforcement learning - Reac-
tive synthesis - Reach-avoid properties - PAC guarantees - Latent policies.

1 Introduction

We consider the fundamental problem of constructing control policies for envi-
ronments modeled as Markov decision processes (MDPs). We are inspired by two



