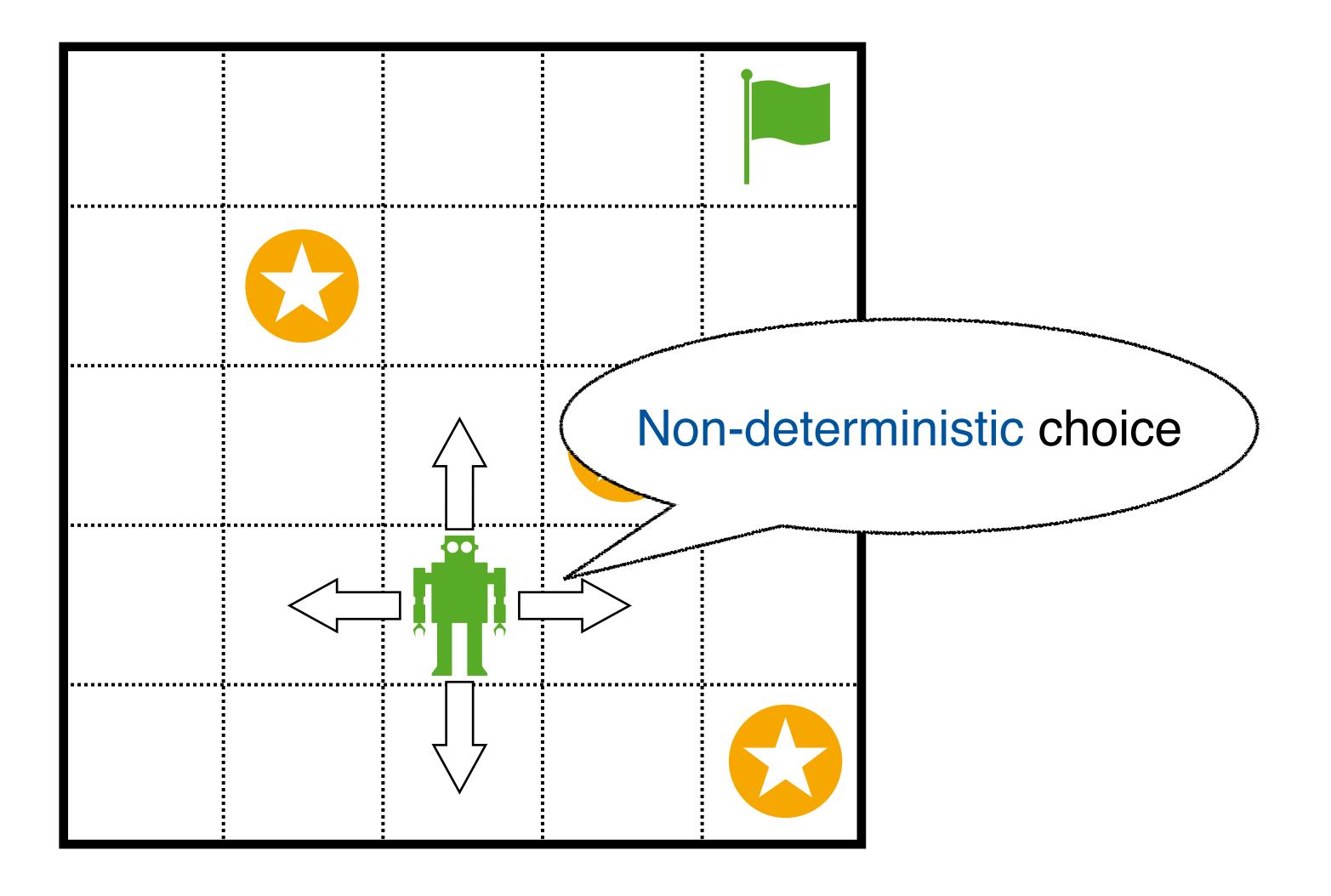
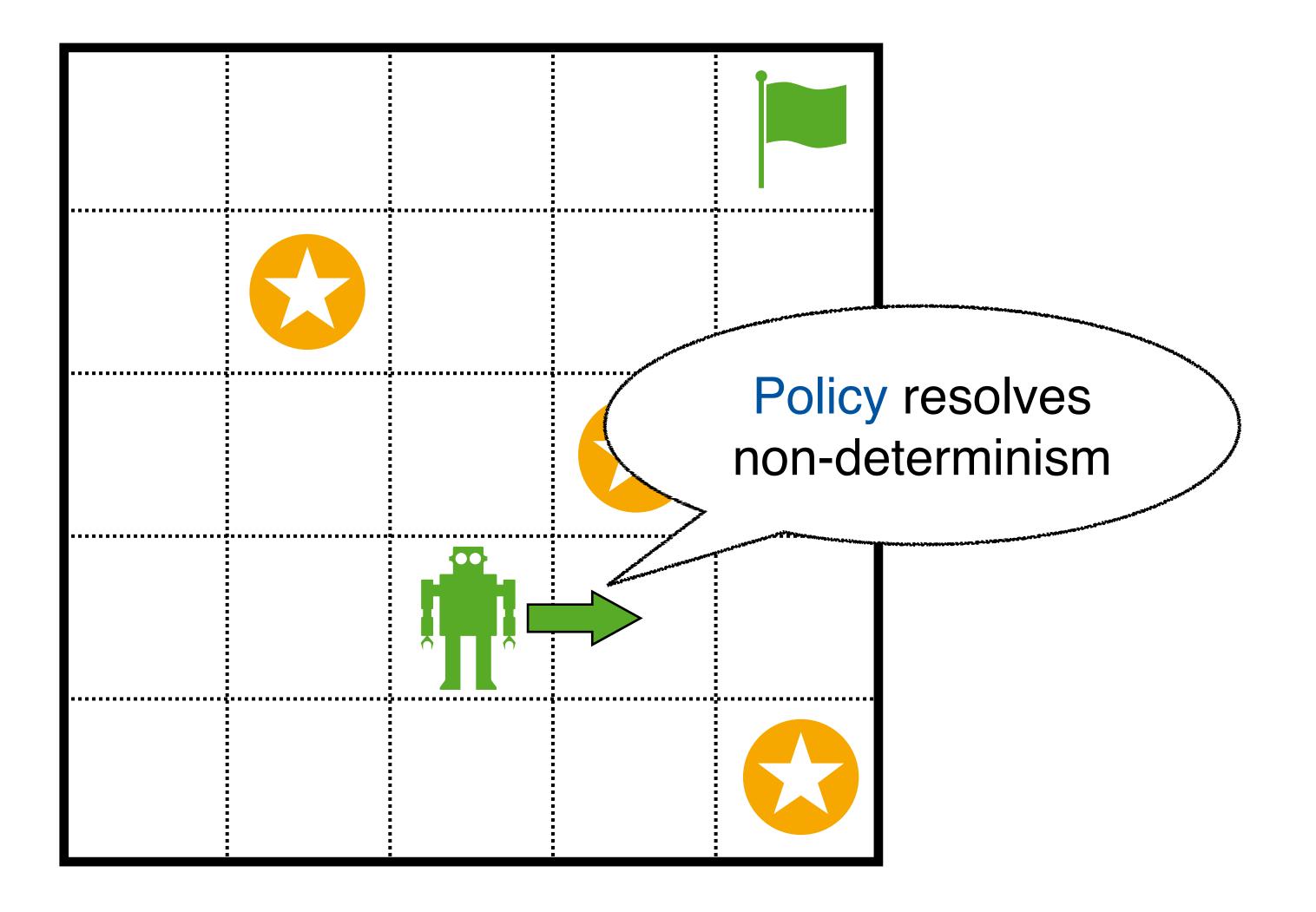
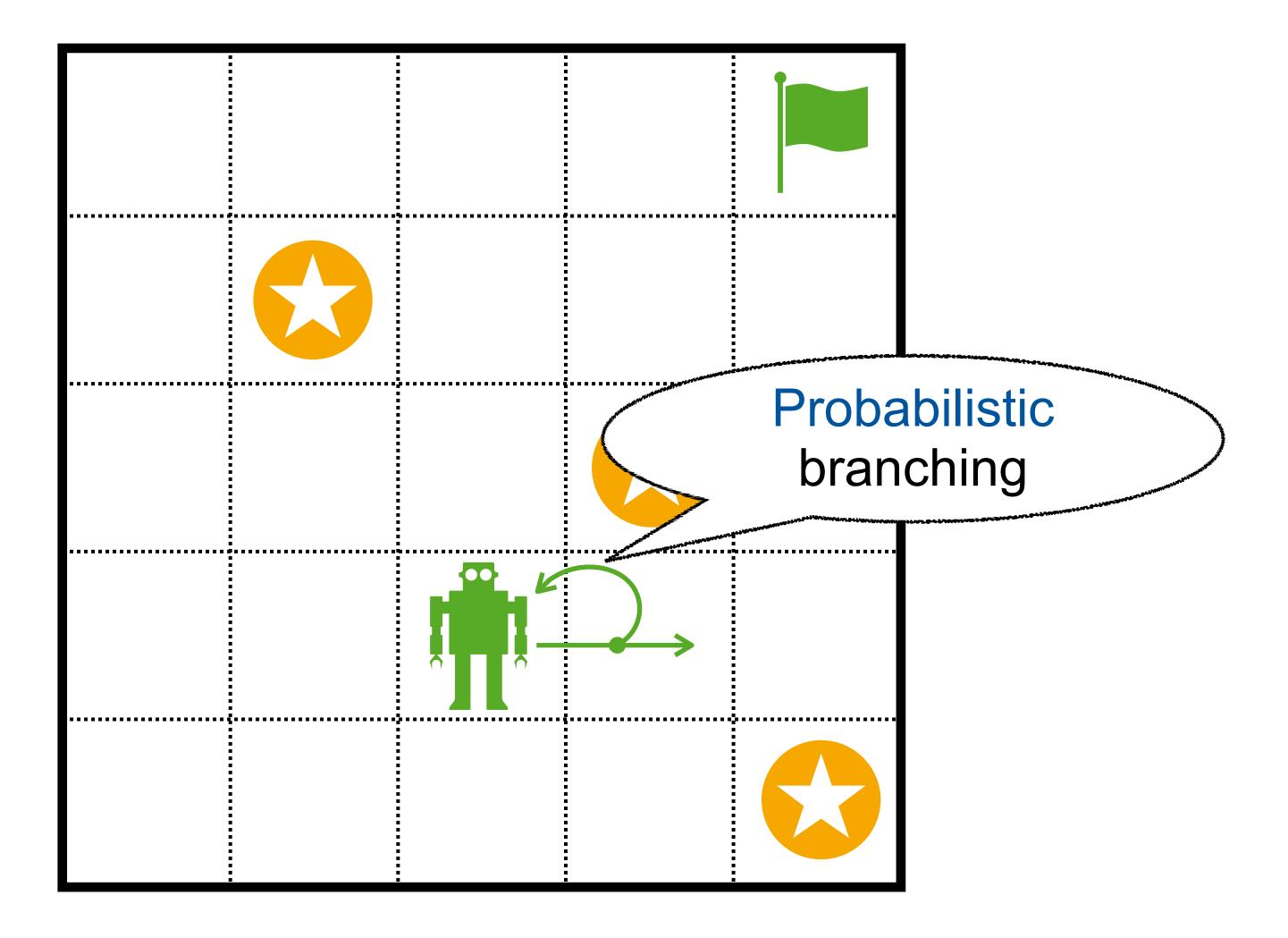
Advances in SAYNT Symbiotic Policy Synthesis in POMDPs

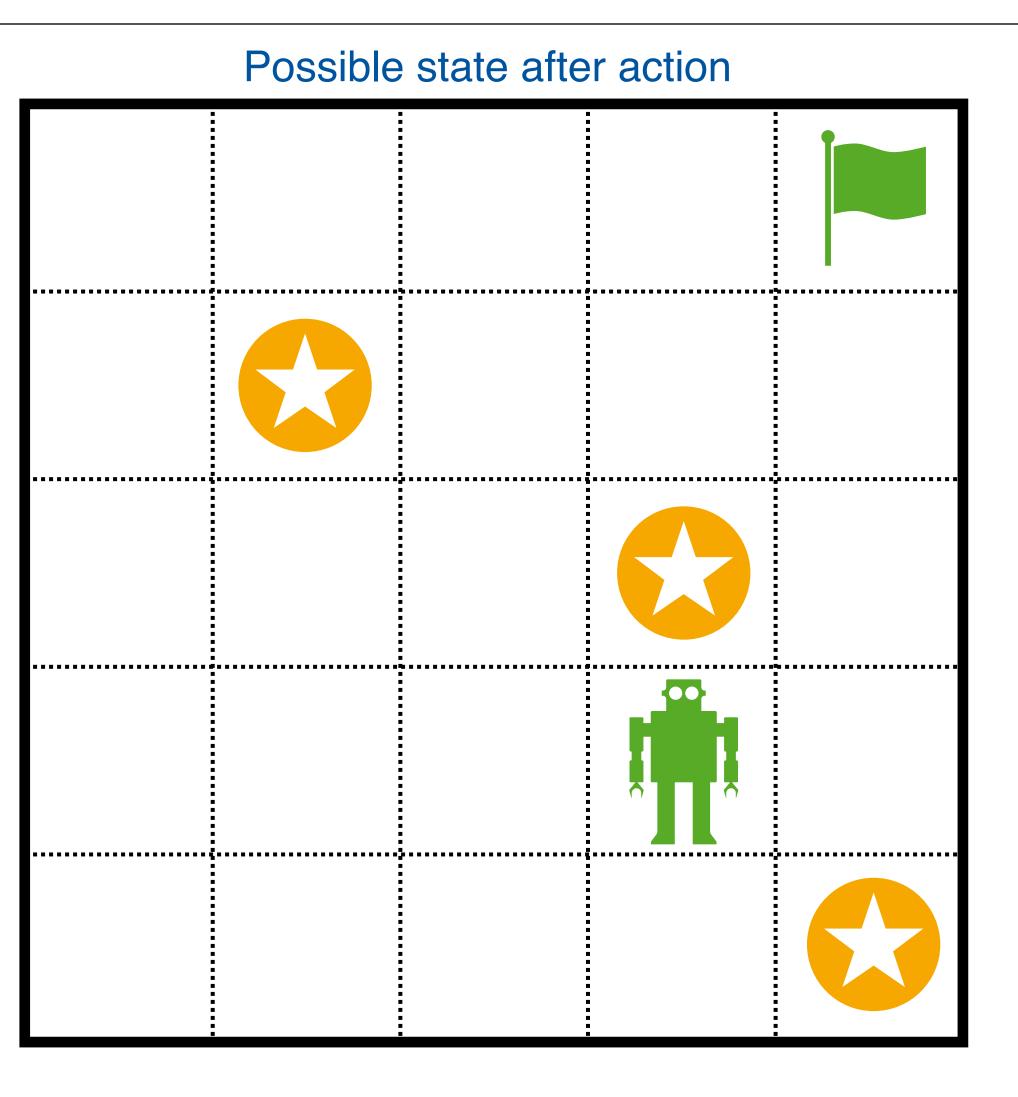
Roman Andriushchenko¹, **Alexander Bork²**, Milan Češka¹, Sebastian Junges³, Joost-Pieter Katoen², Fillip Macák¹

¹ Brno University of Technology, CZ
² RWTH Aachen University, DE
³ Radboud University Nijmegen, NL

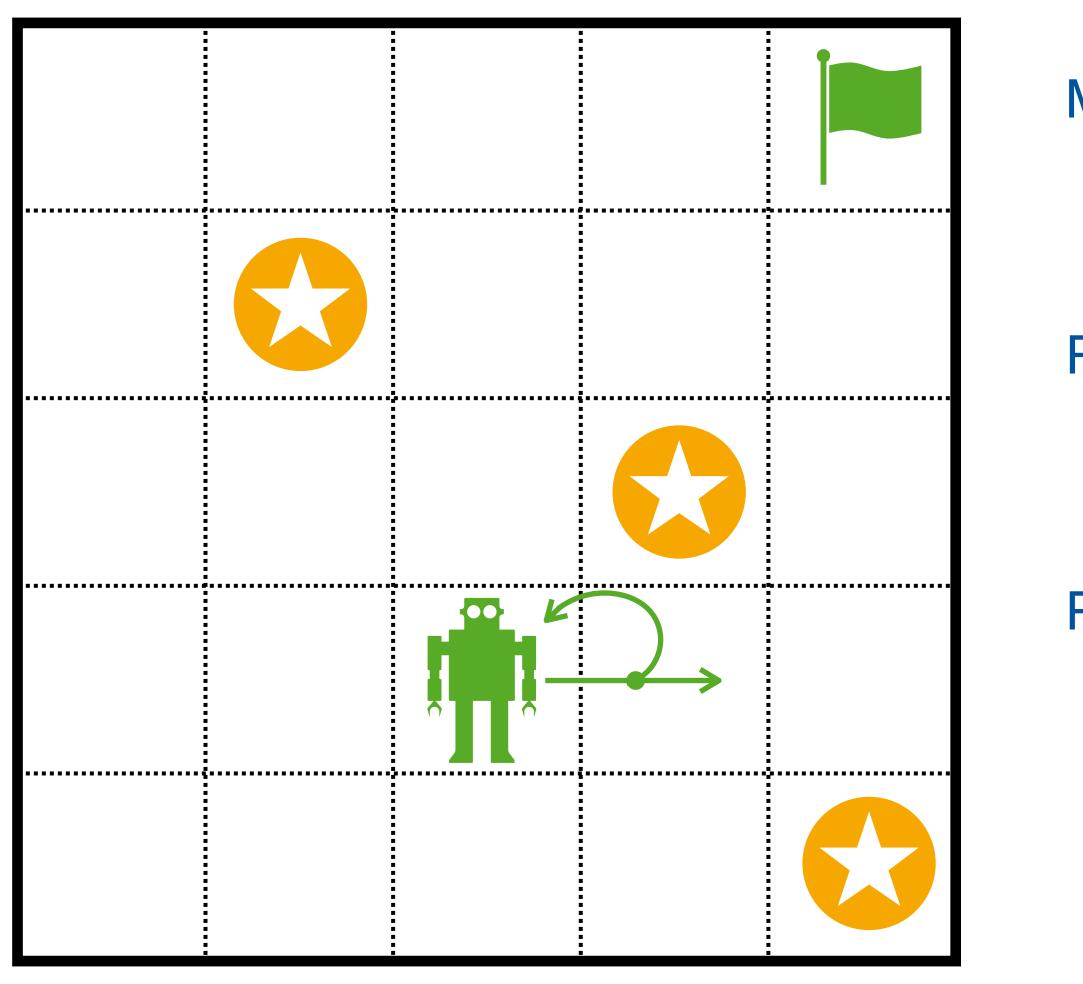








Motivation — MDP



Markov Decision Process (MDP)

- Non-deterministic choice
- Probabilistic branching

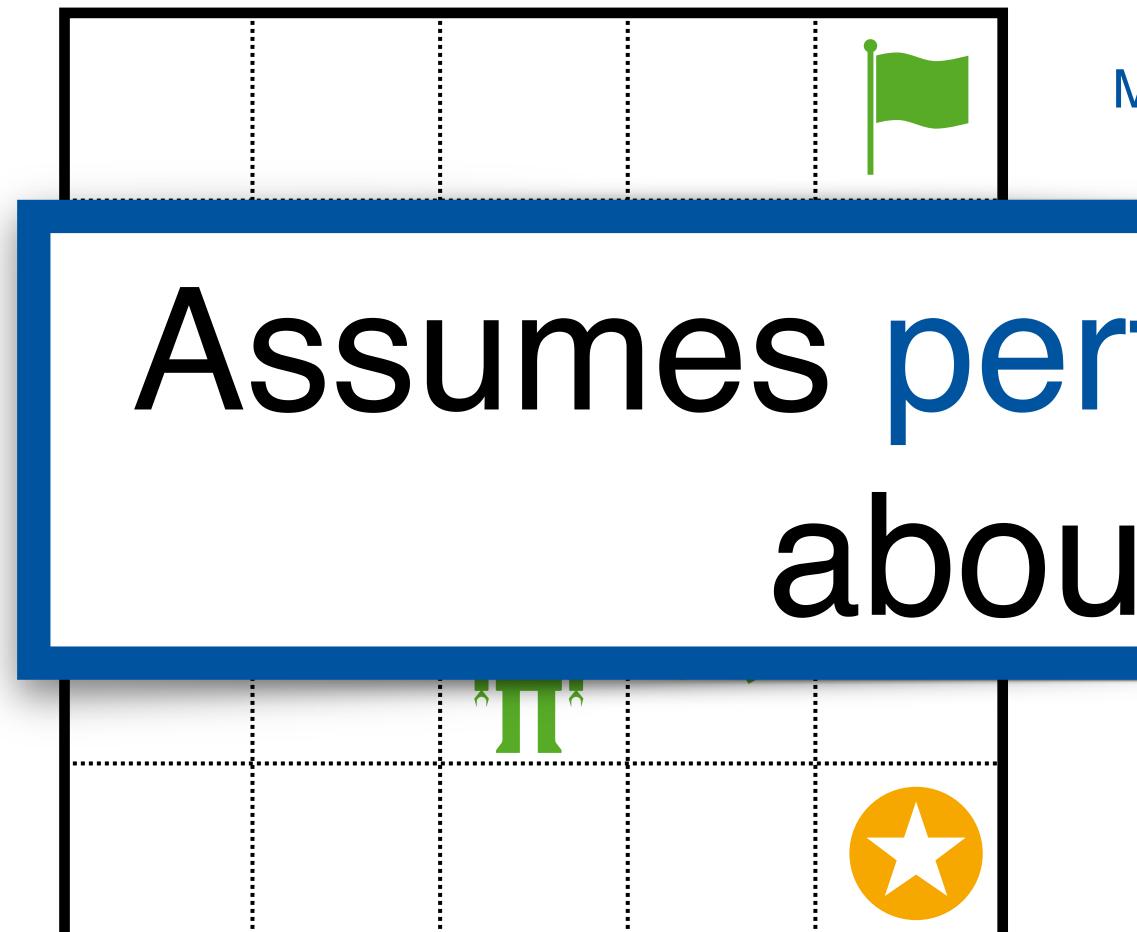
Rewards

- Used to model steps, costs, ...
- Collected when taking a transition

Policy

- Resolves non-determinism
- Maximising/minimising reachability objective: Only state-dependent, no memory necessary

Motivation — MDP



Advances in SAYNT - Symbiotic Policy Synthesis in POMDPs Alexander Bork | LiVe Workshop 2024

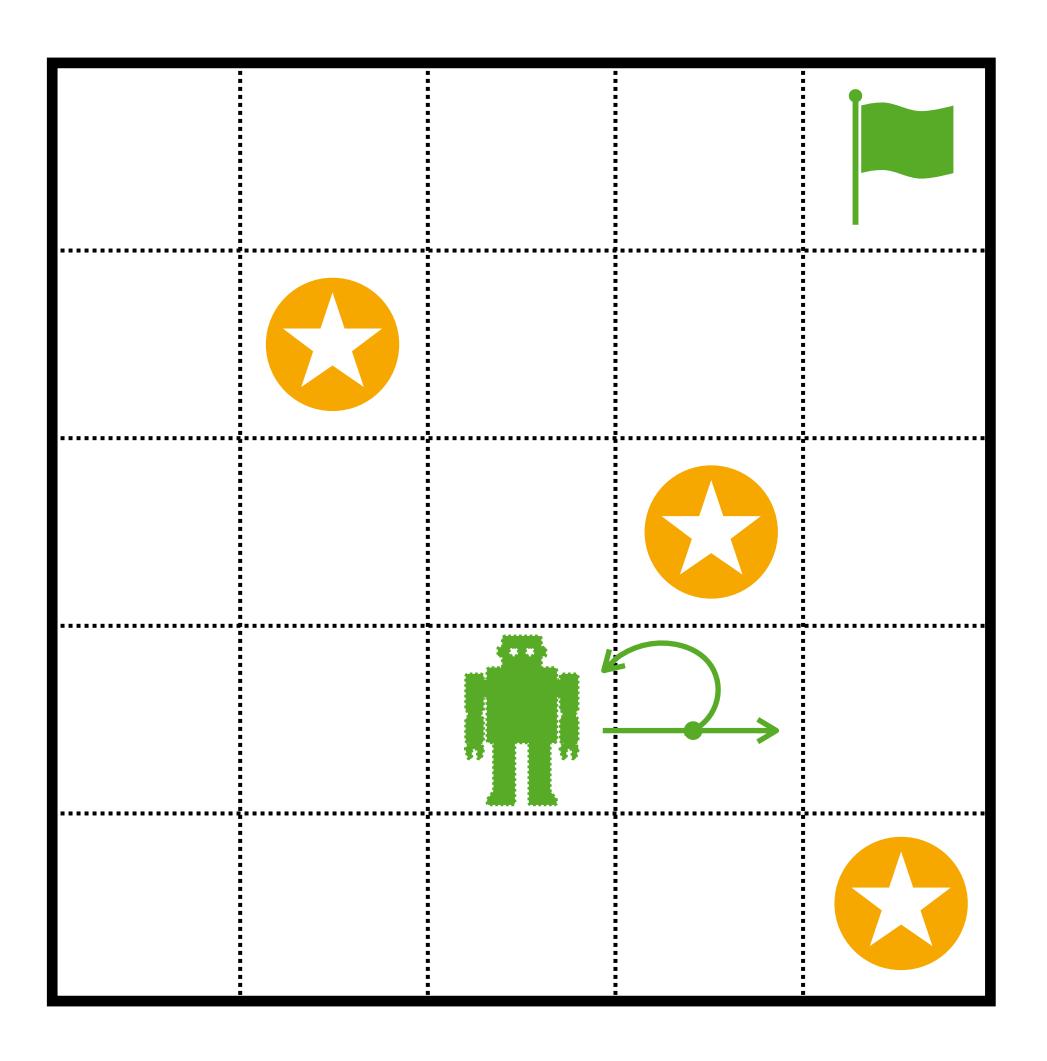
MDPs are a pivotal model for decision making under uncertainty

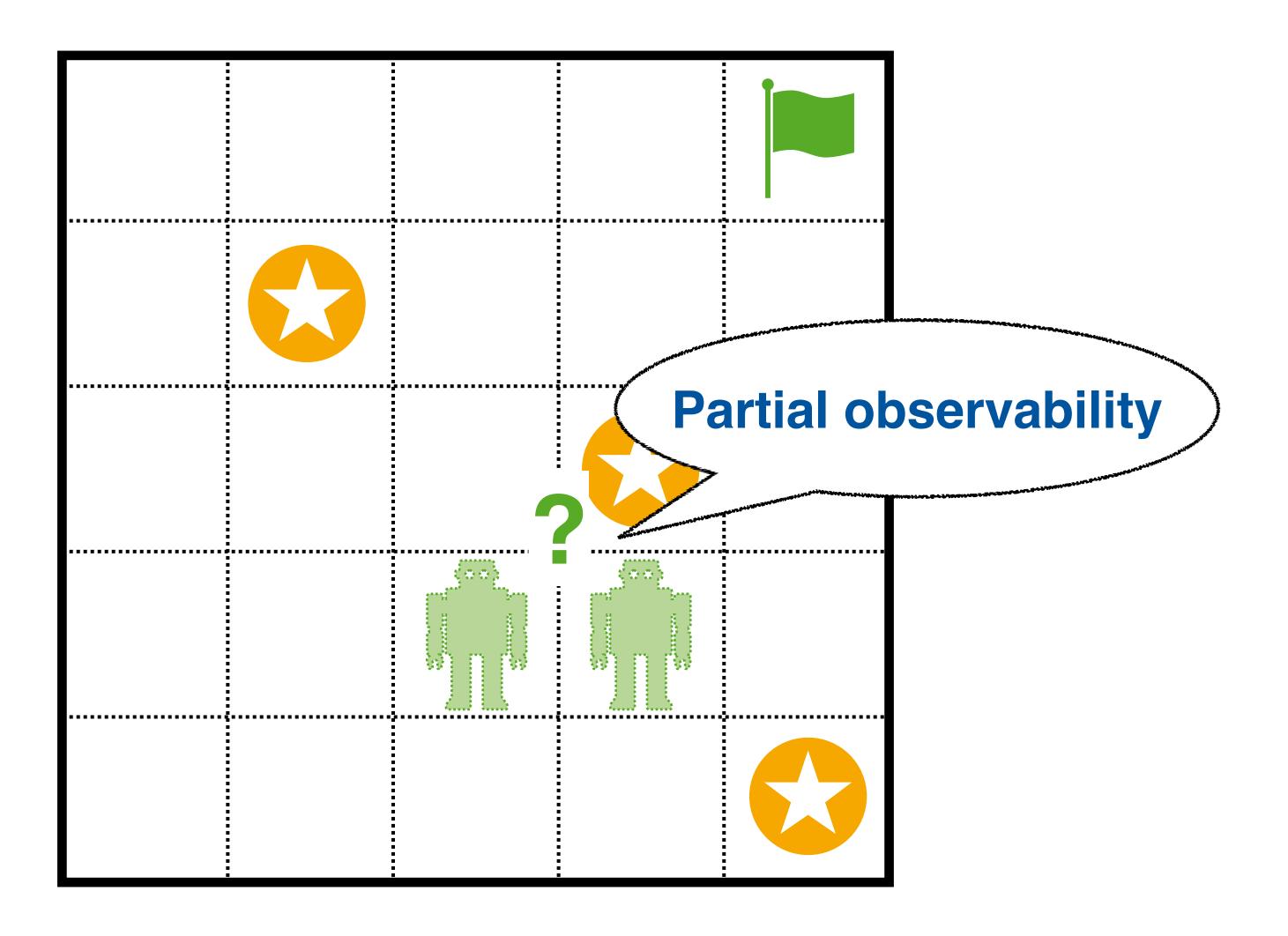
Markov Decision Process (MDP)

Non-deterministic choice

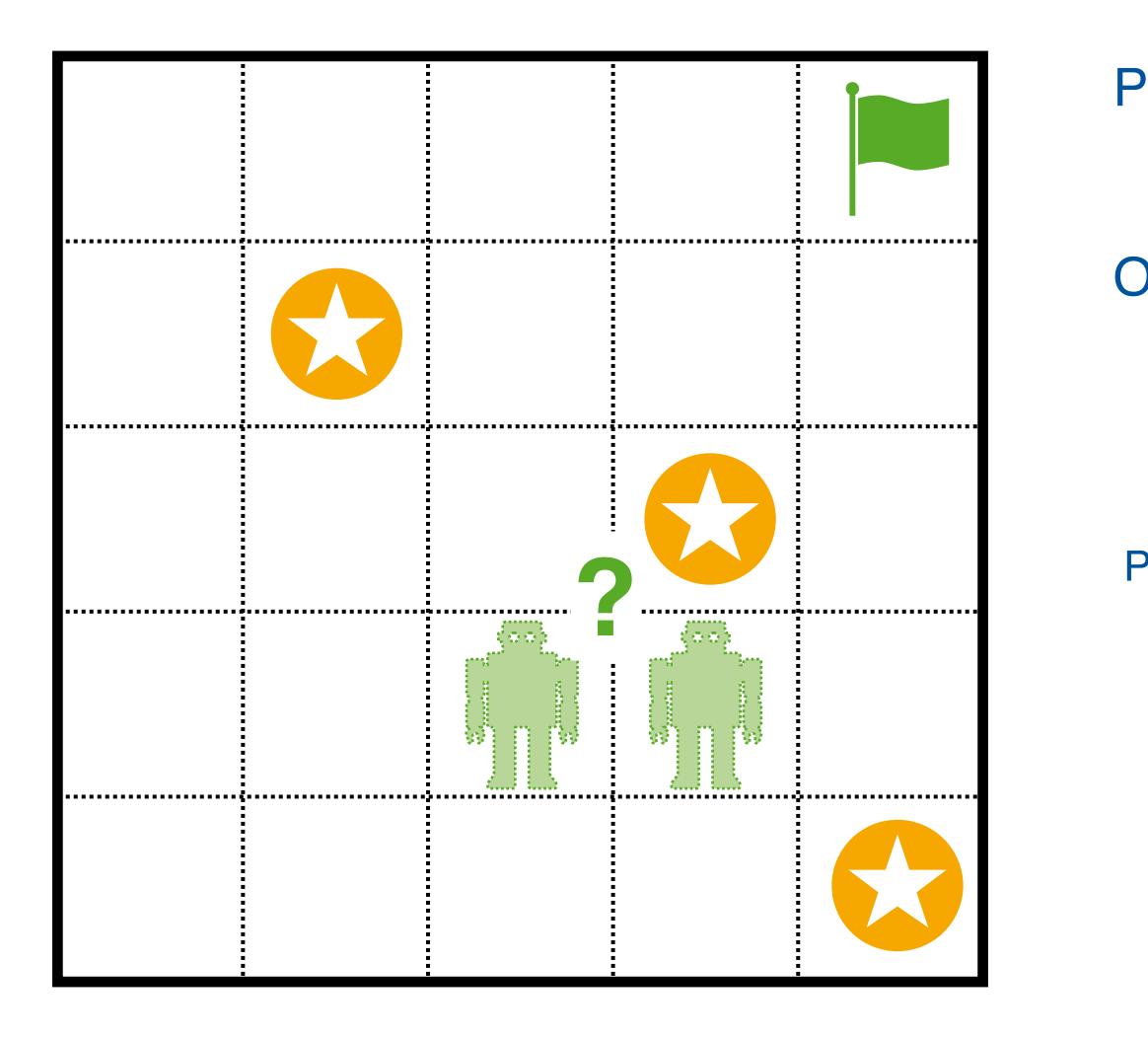
Assumes perfect information about state!

 Maximising/minimising reachability objective: Only state-dependent, no memory necessary

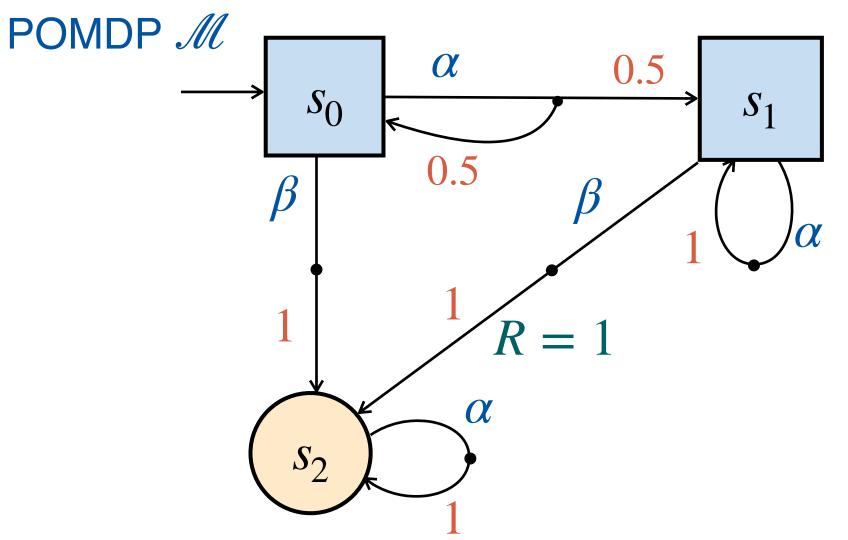




Motivation — **POMDP**

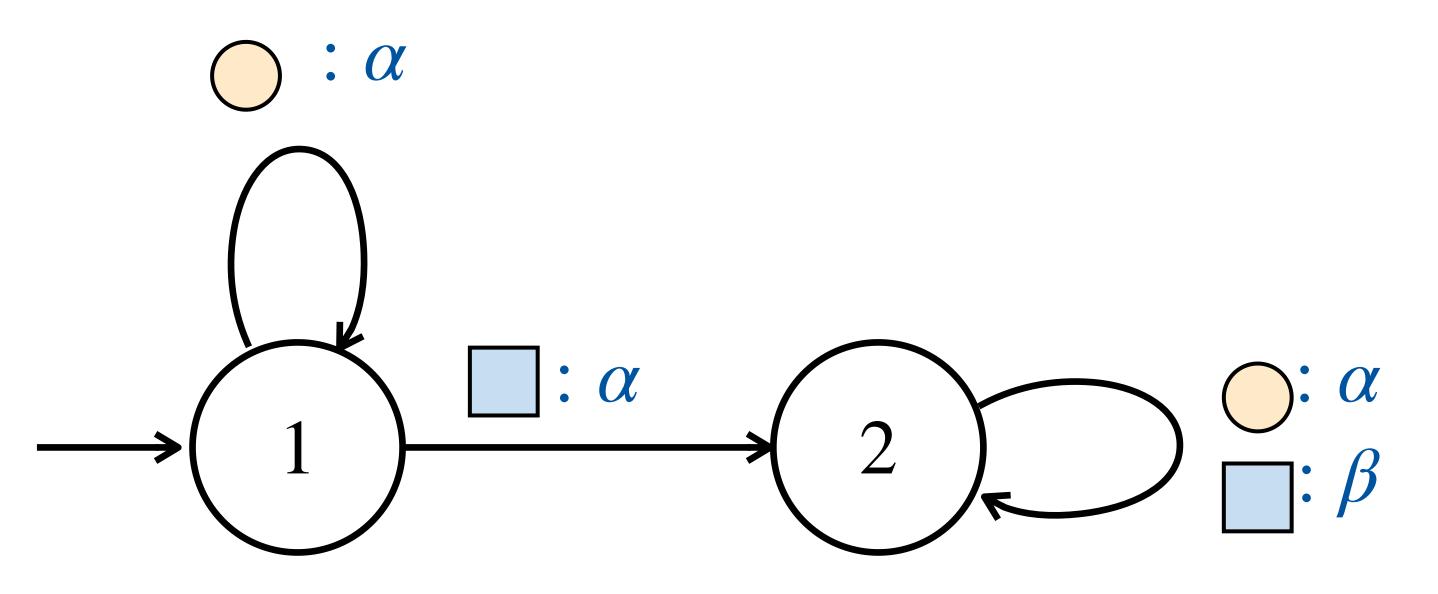


- Partially Observable MDP (POMDP)
 - Extension by observation labels
- **Observation-based policy**
 - Decisions using observable state information
 - Memory is crucial!



Policy Synthesis

- Goal: find policy that maximises expected total reward
 - reward collected along all paths until goal state is reached
- Undiscounted and infinite time horizon
- Optimal policy might not exist → Synthesise good policies (Finite State Controllers)

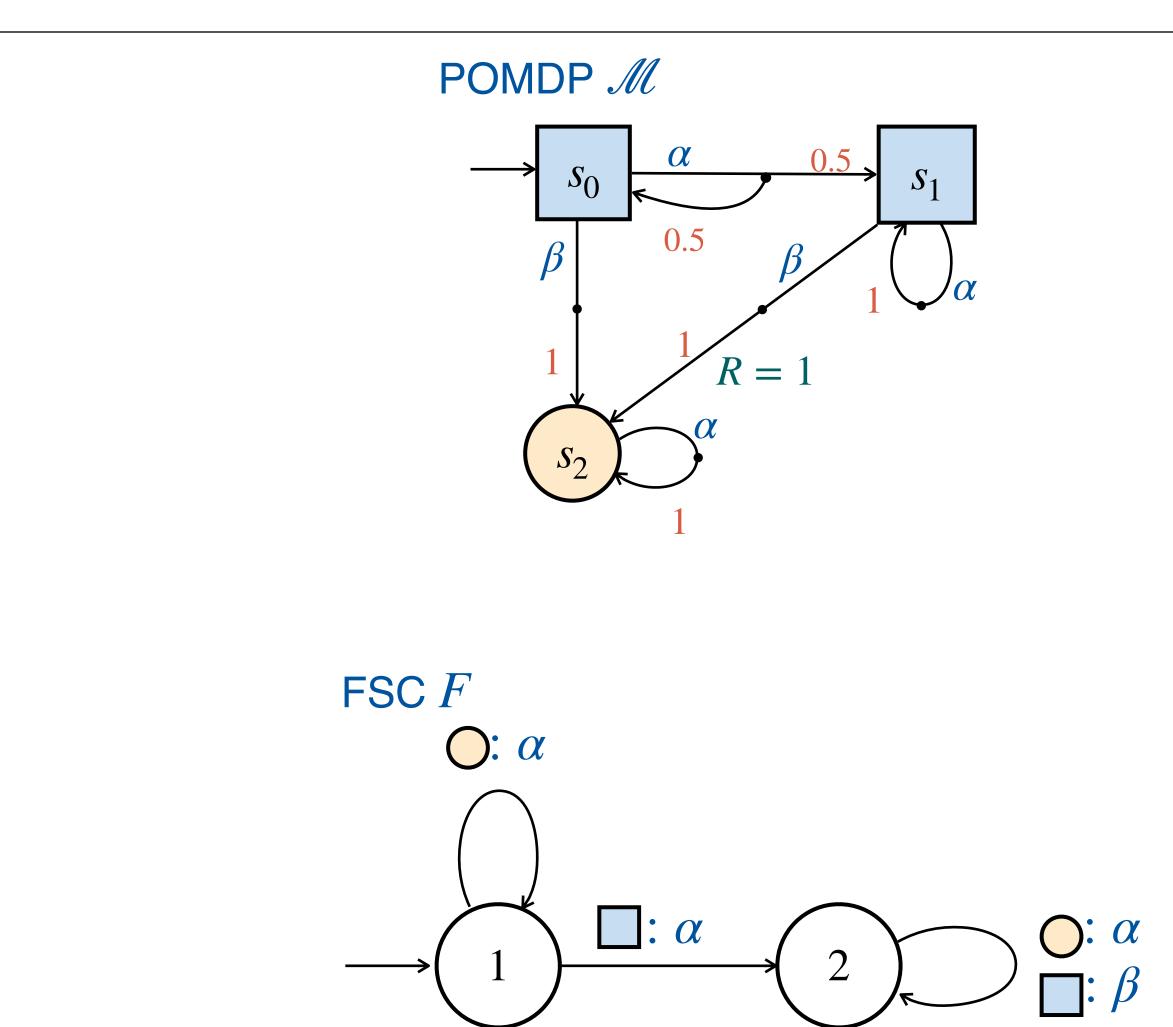


Symbiotic Policy Synthesis

PAYNT: Inductive Policy Synthesis

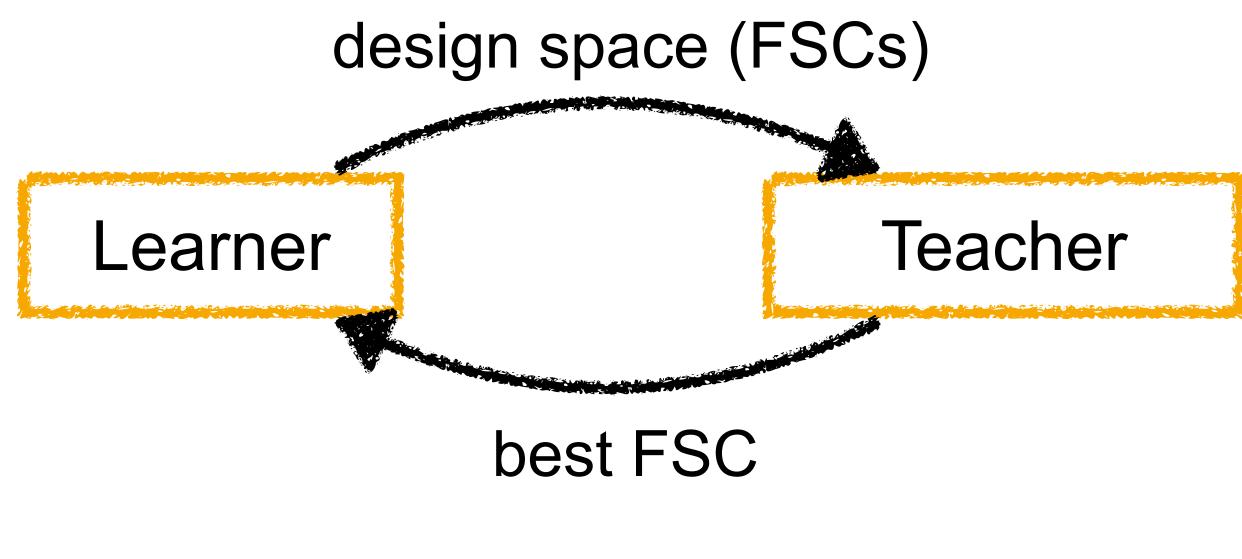
- Synthesise FSC directly
- Use induced MC for value approximation
- STORM: Belief Exploration
 - Construct belief model
 - Compute policy using model checking
 - Obtain controller from computed policy

SAYNT: Symbiotic Approach



Inductive Synthesis for POMDPs — Outer Loop

- Goal: learn deterministic FSC
- Limiting factor: design space size
- Access to oracle can improve design space



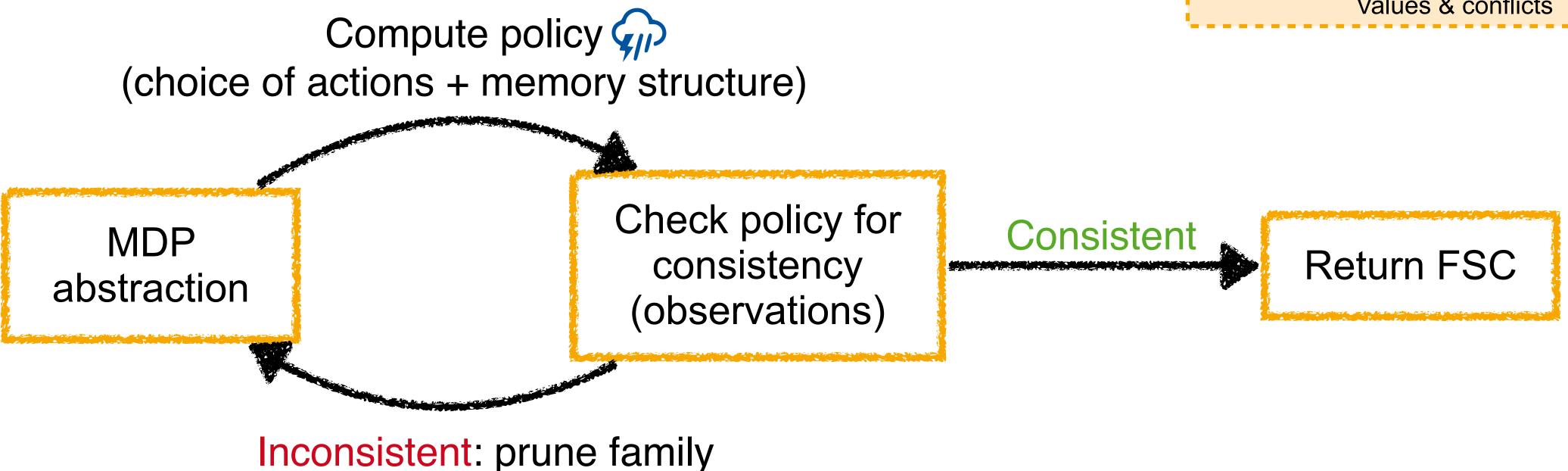
Inductive Synthesis for POMDPs



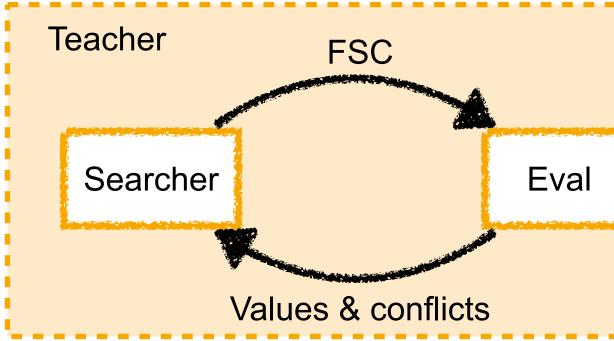
[Andriushchenko et al. 2022]

Inductive Synthesis for POMDPs — Inner Loop

- Teacher gets family of k-FSC
 - FSC parameterised in action-choice and memory transitions
- MDP abstraction of family of induced MCs



[Andriushchenko et al. 2022]



Symbiotic Policy Synthesis

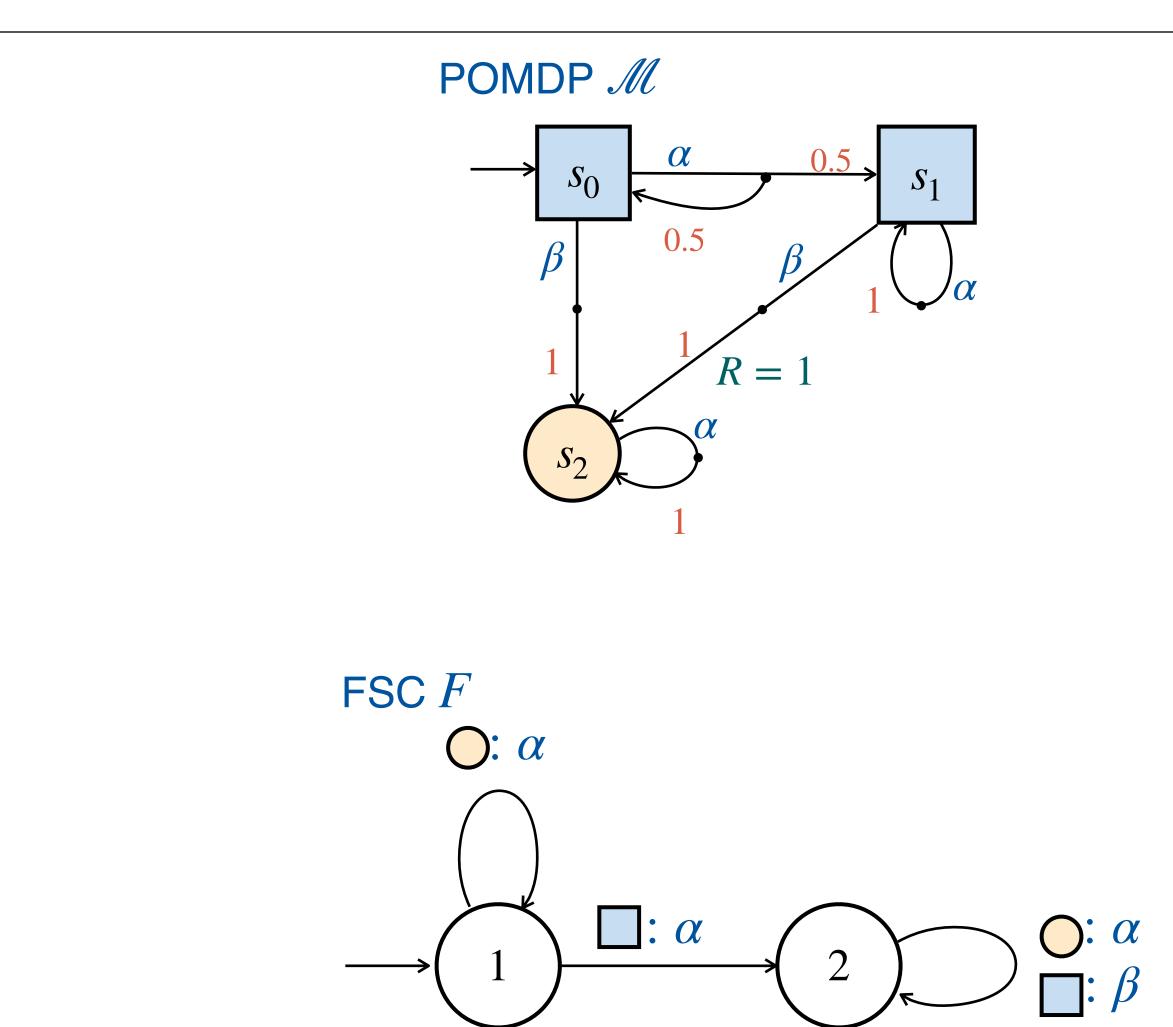
PAYNT: Inductive Policy Synthesis

- Synthesise a finite state controller
- Use induced MC for value approximation

• **STORM: Belief Exploration**

- Construct belief model
- Compute policy using model checking
- Obtain controller from computed policy

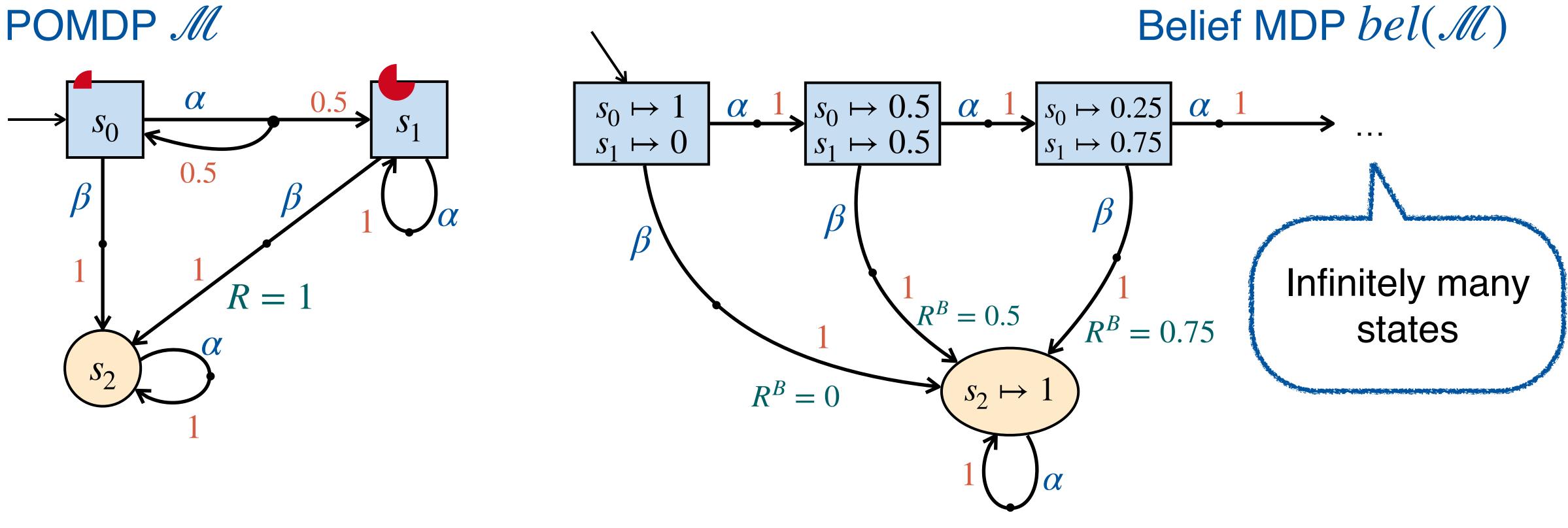
SAYNT: Symbiotic Approach



POMDP Semantics — Belief MDP

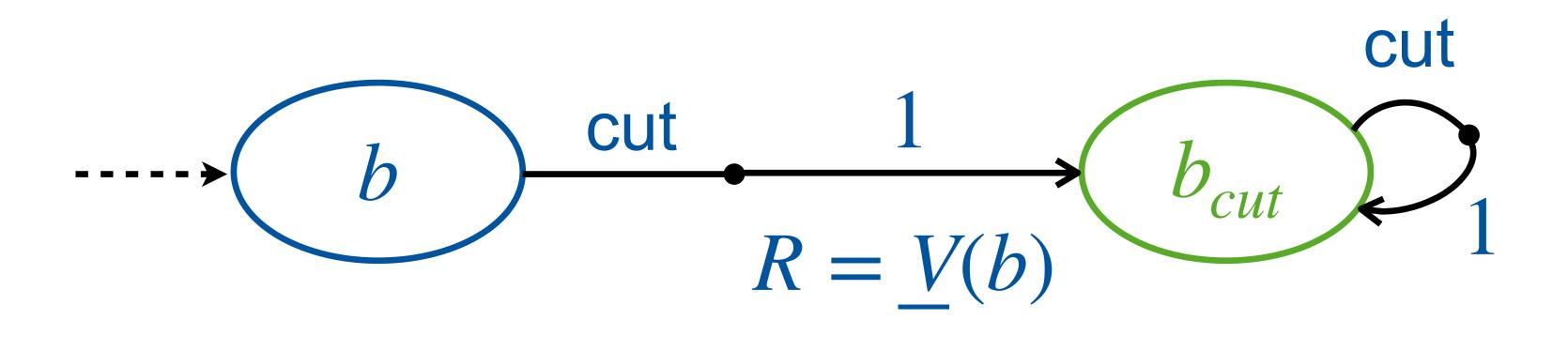
Belief

- Distribution over POMDP states
- Describes likelihood to be in state given observation history



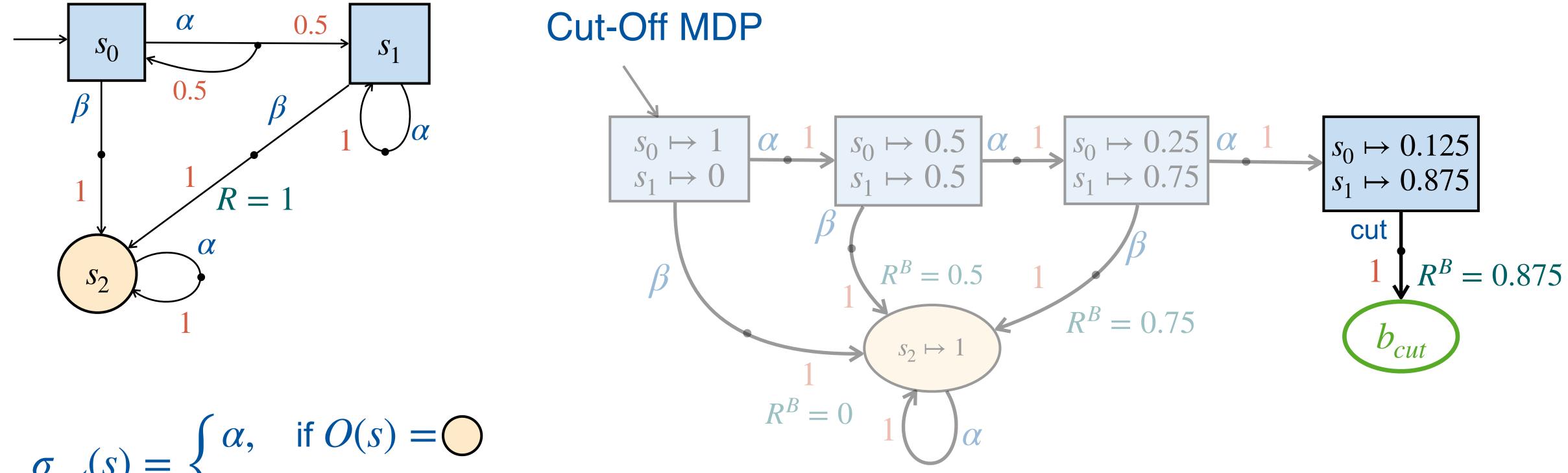
Belief Exploration with Cut-Offs

- Obtain finite MDP for model checking
- Explore part of belief space, approximate values (Cut-Offs)
- Approximation: based on some policy for POMDP
- •Weight values by belief distribution, add goal transition + approx. reward



Belief Exploration — Example

POMDP *M*



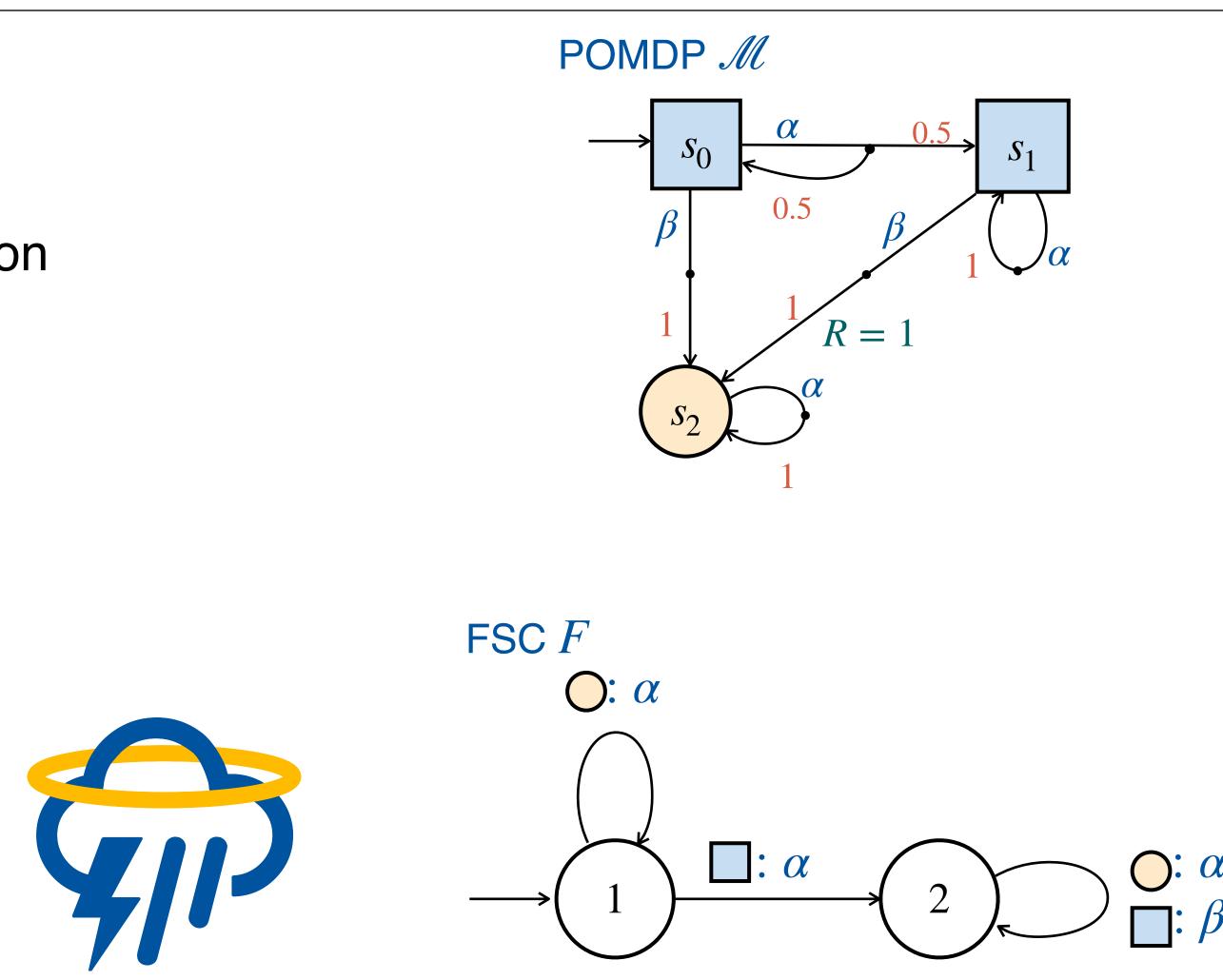
$$\sigma_{cut}(s) = \begin{cases} \alpha, & \text{if } O(s) = \bigcirc \\ \beta, & \text{otherwise} \end{cases}$$

Symbiotic Policy Synthesis

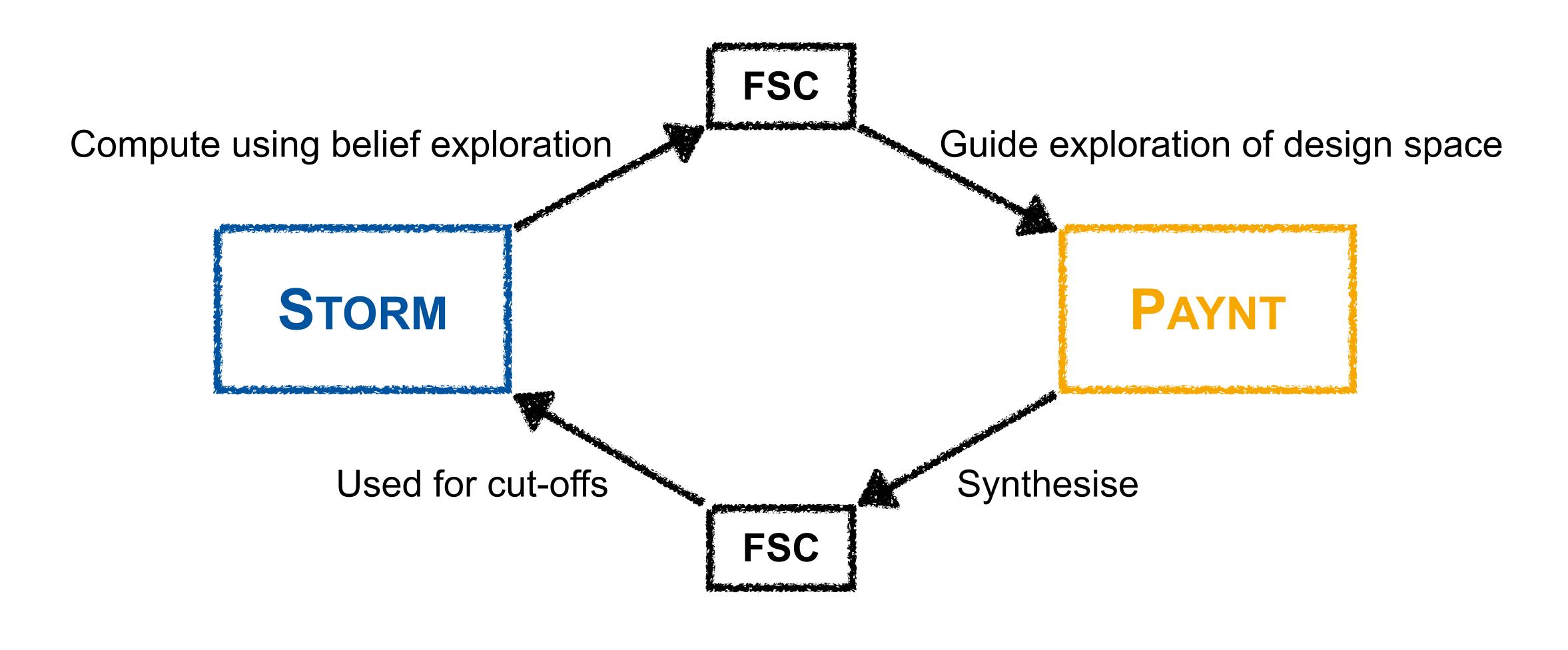
PAYNT: Inductive Policy Synthesis

- Synthesise finite state controller
- Use induced MC for value approximation
- **STORM: Belief Exploration**
 - Construct belief model
 - Compute policy using model checking
 - Obtain controller from computed policy

SAYNT: Symbiotic Approach



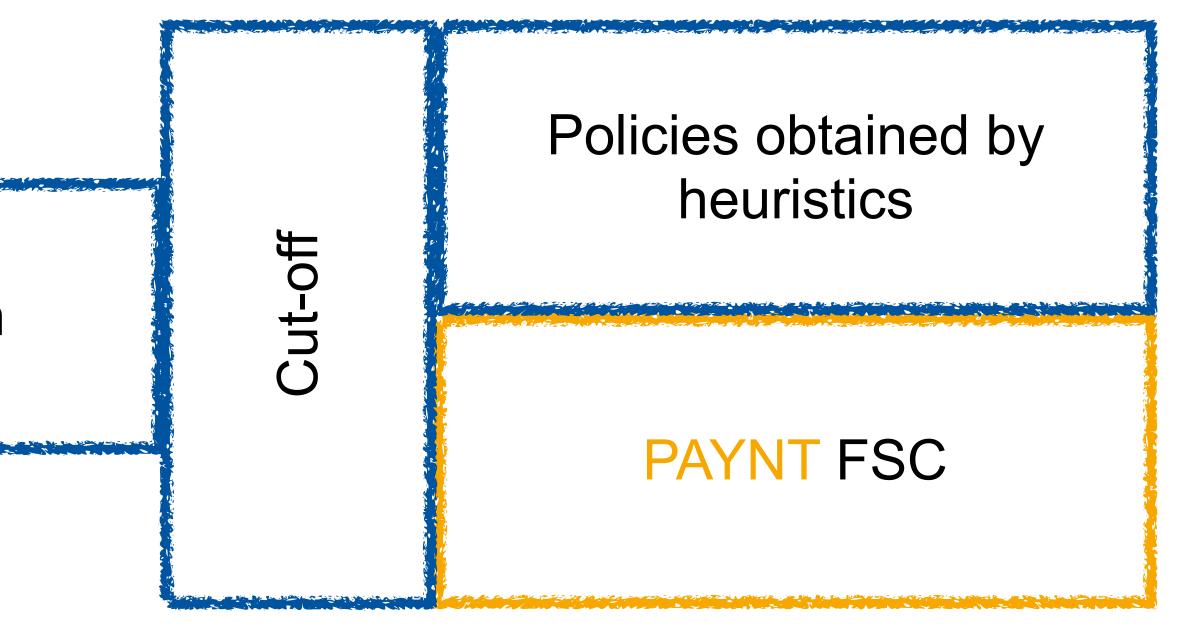
Symbiotic Approach — Overview



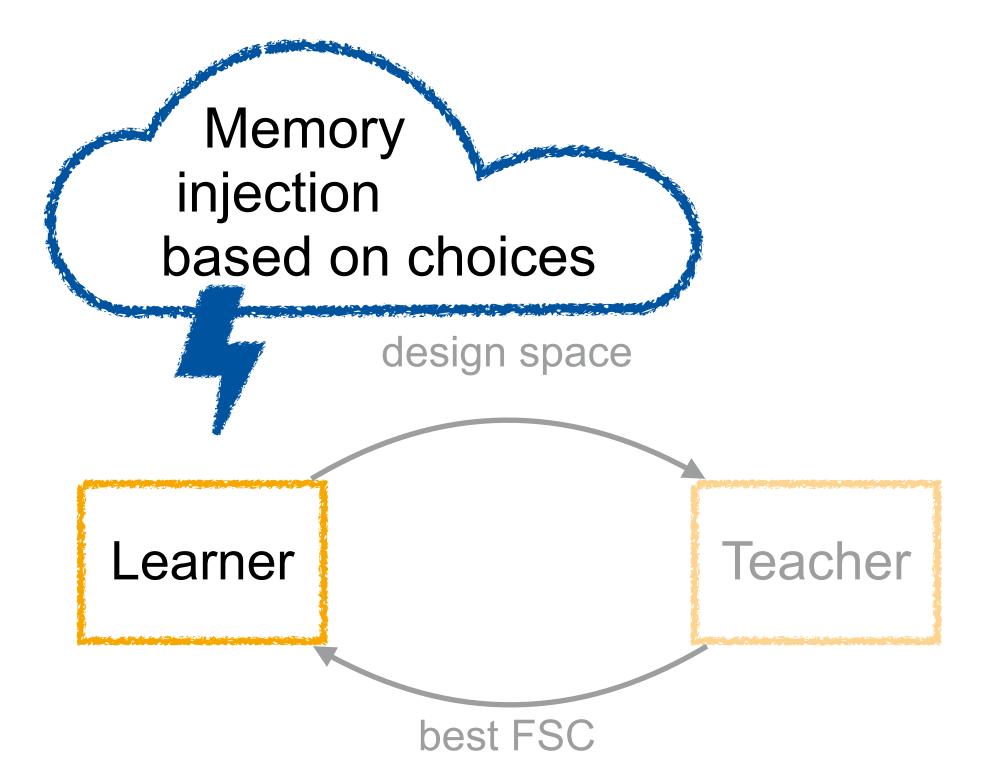
PAYNT → STORM

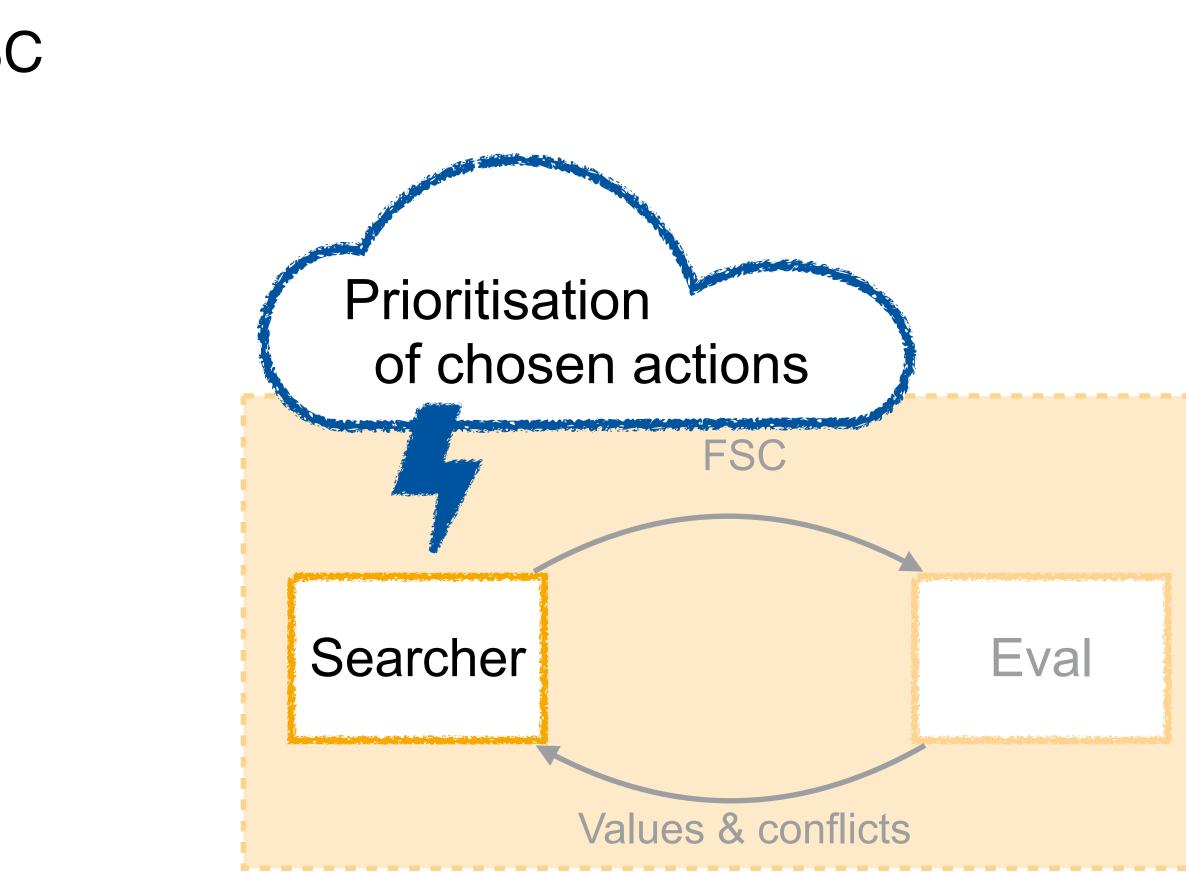
- Use FSC synthesis for cut-off values
- FSC induces state values
 - Convex combination with belief
 - Maximisation over memory nodes in induced MC

Belief Exploration



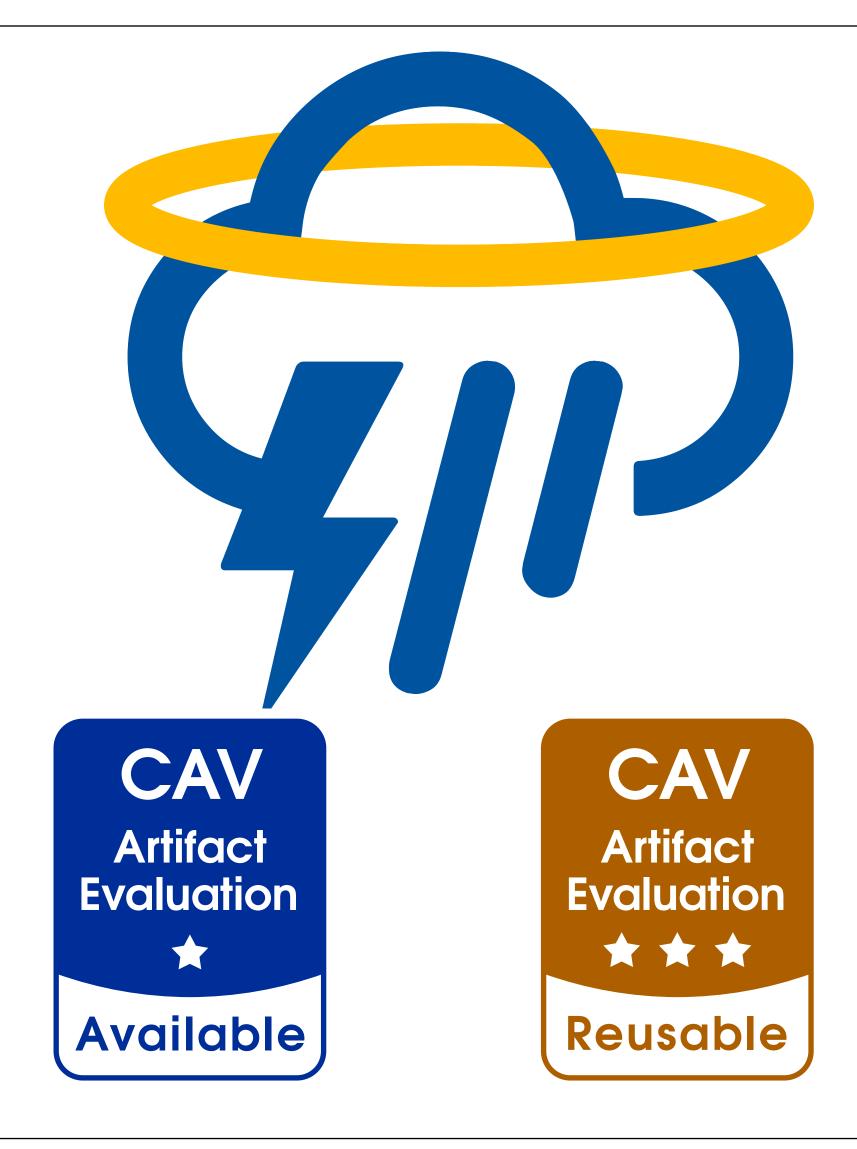
• **STORM** provides policy on cut-off MDP = FSC





Implementation

- Integrated in STORM/PAYNT
- Minimisation/Maximisation
 - Reachability Probabilities
 - Expected Total Rewards
- Part of main releases



Results — CAV '23 (Excerpt)

Benchmark	Over-	PAYNT	STORM	SAYNT
(States/Act./Obs.)	Approx.			
Refuel 20 - max		0.02	0.15	0.24
(6834/24k/66)	≤ 0.99	922s	468s	386s
Drone 8-2 - max	≤ 0.99	0.9	0.68	0.96
(13k/32k/3195)		260s	98s	247 s
Netw 3-8-20 - min	1 21	11.04	10.27	10
(17k/30k/2205)	≥ 4.31	638s	238s	742s
Lanes+ - min	≥ 4805	8223	18870	4805
(2741/5289/11)		118s	376s	173s
4x5x2 95 - max	≤ 3.26	0.94	2.08	2.08
(79/310/7)	≥ 0.20	305s	3s	71s
nax: larger is better				

min: smaller is better

Advances in SAYNT - Symbiotic Policy Synthesis in POMDPs Alexander Bork | LiVe Workshop 2024

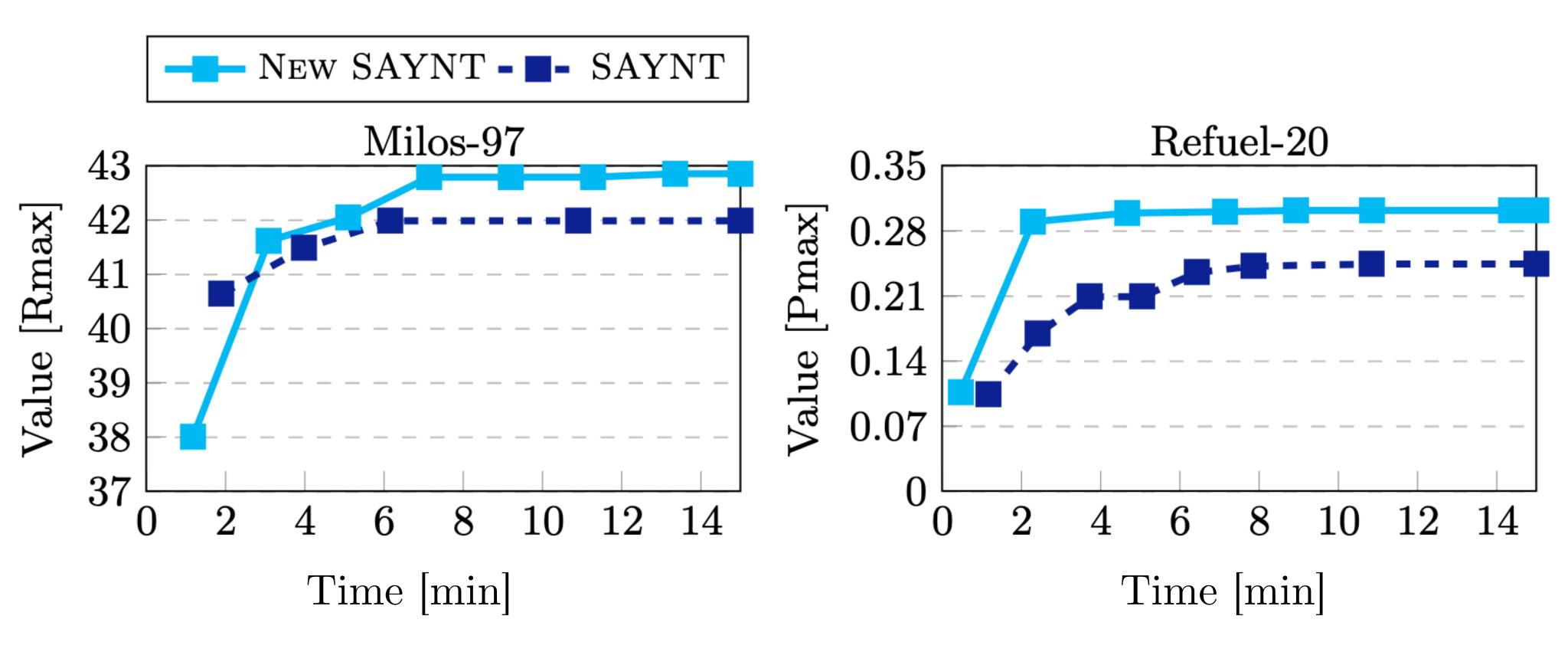
Intel i5-12600KF @4.9GHz CPU / 64GB RAM Timeout: 15min

Lots of additional results in the paper

• Motivation:

- PAYNT optimise FSC for initial state
- good in initial state \neq good for all beliefs
- Seed synthesis in cut-off beliefs
- Use over-approximation as guide
- Prioritise large gaps

Focused FSC Synthesis — Prelim. Results



BUT: **STORM**'s over-approximations are costly for small benefit → better over-approximations?

Advances — **Discounting**

- Discounted reward: standard in AI applications
- Solvers available (SARSOP [Kurniawati, Hsu, Lee 2008], ...)
- Added support in STORM
 - Modify MDP model checking engine
 - enables discounting in PAYNT and STORM POMDP

No results to report yet, stay tuned!

Policy Synthesis in POMDPs

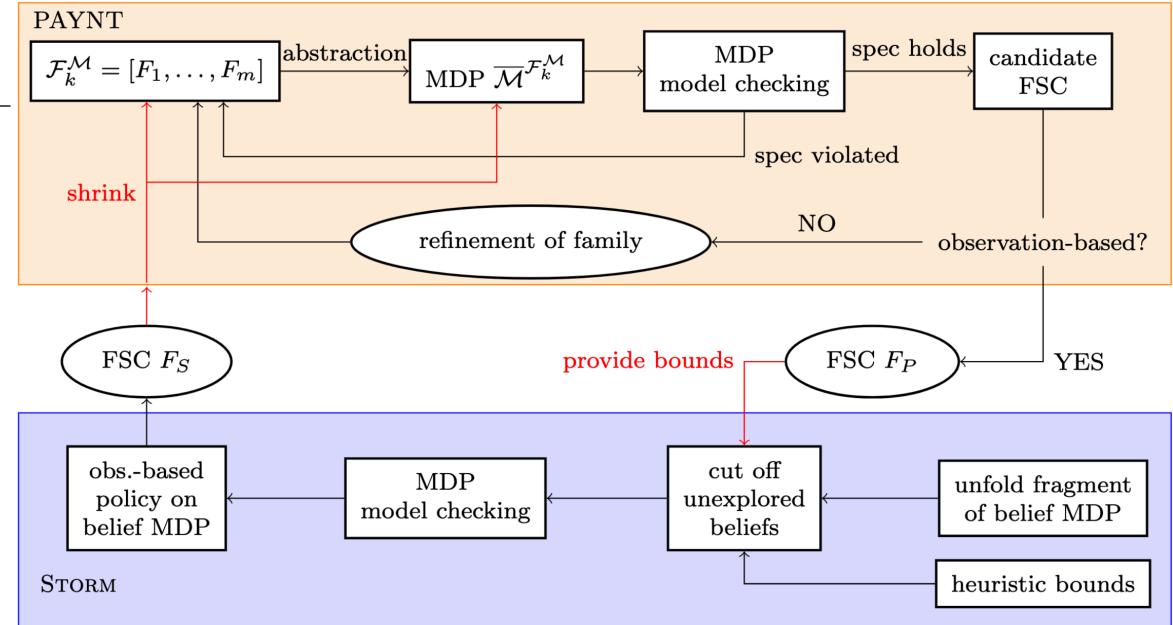
- Difficult problem, practically relevant
- Approximation necessary

Our Approach SAYNT

- Inductive synthesis + belief exploration
- Experiments show potential of symbiosis

Current Developments

- Multiple FSCs
- Integration of over-approximations
- Discounting



Scan for CAV '23 Paper

