
Verifying probabilistic procedural programs

Javier Esparza

Software Reliability and Security Group

University of Stuttgart

Joint work with Kousha Etessami.

Based on papers by Kousha Etessami and Mihalis Yannakakis,

by Javier Esparza, Antonı́n Kučera and Richard Mayr,

and by Tomáš Brázdil, Antonı́n Kučera, and Oldřich Stražovský

1

Motivation

Model checkers of the first generation (SPIN,SMV,Murphi, . . .) only work for
finite-state systems

Programs with recursive procedures may be infinite-state,
even if all variables have a finite range (unbounded call stack)

Non-recursive procedure calls can be eliminated using inlining,
but inlining may cause an exponential blow-up in the size of the program.
This is inefficient (and unnecessary)

Goal: Design model checkers that work directly on the procedural representation

Abstract model: recursive state machines (RSMs) and pushdown systems
(PDSs)

2

RSMs and PDSs

Recursive state machines

A
A

A

en
ex

en
en

ex
ex

Pushdown systems

pA ↪−→ pε

pA ↪−→ pAA

3

A quick comparison:

• Almost equivalent models (linear translations)

• RSMs make the procedure structure explicit. The structure can be exploited
to obtain algorithms with slightly better complexity
(Alur, Etessami, Yannakakis 01)

• Pushdown systems are more abstract, and have found applications outside
the analysis of programs, like authorization problems
(Schwoon, Jha, Reps, Stubblebine 03)

In this talk we’ll use pushdown systems, but only because of the speaker!

4

Pushdown systems

A pushdown system is a triple (P,Γ, δ), where

• P is a finite set of control locations

• Γ is a finite stack alphabet

• δ ⊆ (P × Γ)× (P × Γ∗) is a finite set of rules.

A configuration is a pair pα, where p ∈ P, α ∈ Γ∗

Semantics: A (possibly infinite) transition system with configurations as states
and transitions given by

If pX ↪→ qα ∈ δ then pXβ −→ qαβ for every β ∈ Γ∗

Normalization: |α| ≤ 2, termination only by empty stack

5

From programs to pushdown systems

State of a procedural program: (g, n, l, (n1, l1) . . . (nk , lk)), where

• g is a valuation of the global variables,

• n is the value of the program pointer,

• l is a valuation of local variables of the current active procedure,

• ni is a return address, and

• li is a saved valuation of the local variables of a calling procedure

Modelled as a configuration pXY1 . . . Yk where

p = g X = (n, l) Yi = (ni , li)

6

Correspondence between program statements and rules

procedure call pX ↪→ qYX

return pX ↪→ qε

statement pX ↪→ qY

7

Current state

Efficient algorithms for reachability and model-checking problems

• Alur, Etessami, Yannakakis: Analysis of Recursive State Machines, CAV 2001

• Benedikt, Godefroid, Reps: Model Checking of Unrestricted Hierarchical
State Machines, ICALP 2001

• Esparza, Hansel, Rossmanith, Schwoon: Efficient Algorithms for Model
Checking Pushdown Systems, CAV 2000

MOPED: A model-checking tool for pushdown systems (Schwoon)

Weighted PDS library: (Schwoon, Reps, Jha)

8

Applications in different areas:

• Finding security bugs in C programs (Chen, Dean, Wagner)

• Analyzing Java programs and Java bytecode (NASA IS Project and JCAVE
project)

• Interprocedural Dataflow Analysis (Reps, Schwoon, Jha)

• Authorization problems (Schwoon, Jha, Reps, Stubblebine)

• Finding bugs in Windows XP drivers (Ball, Rajamani,Schwoon)

9

Current work on

Counterexample-based abstraction refinement

Tailoring the algorithms for different applications

Extensions of the model in order to handle

• Concurrency

• Dynamic process creation

• Stochastic behaviour (randomized algorithms, stochastic models)

10

Stochastic verification

Finite Markov chains as model of probabilistic while-programs with finite
datatypes

Decidability and complexity problems extensively studied
[Lehman and Shelah 82, Vardi 85, Courcoubetis and Yannakakis 95, ...]

Good tools for finite-state systems (e.g. PRISM)

We introduce probabilistic pushdown systems as a model of procedural
programs with finite datatypes

11

Probabilistic pushdown systems

A probabilistic pushdown system (PPDS) is a tuple P = (P,Γ, δ, Prob), where

• (P,Γ, δ) is a PDS, and

• Prob : δ → (0..1] such that for every pair pX :∑
pX ↪−→qα

Prob(pX ↪−→ qα) = 1

Notation: We write pX
x

↪−→ qα for Prob(pX ↪−→ qα) = x

Semantics: A (possibly infinite) Markov chain with configurations as states and
transition probabilities given by

If pX
x

↪−→ qα ∈ δ then pXβ
x−−−→ qαβ for every β ∈ Γ∗

12

Probabilistic verification

Qualitative properties: does a program property hold with probability 1?

(Has the set of program runs satisfying the property measure 1 ?)

Quantitative properties: does a program property hold with probability at least ρ ?

(Is the measure of the set of program runs satisfying the property at least ρ?)

In this talk:

• Reachability of control states

• Repeated reachability of control states

• Verification of Büchi specifications

• Verification of PCTL specifications

13

A one-state PPDS

pZ
x

↪−→ pZZ

pZ
1−x
↪−→ pε

x

1−x1−x 1−x

x x

1−x

. . .pZ pZZ pZZZpε

Even qualitative properties depend on the actual values of the probabilities

−→ qualitative problems cannot be solved by graph-theoretical methods only

14

A basic result

Define [pXq] as the probability of, starting at the configuration pX , eventually
reaching the configuration qε.

Theorem: The [pXq]’s are the least solution of the following system of equations:

〈pXq〉 =
∑

pX
x

↪−→qε

x +
∑

pX
x

↪−→rYZ

x ·
∑
t∈P

〈rYt〉 · 〈tZq〉

The system is of the form x = P(x), and the sequence 0, P(0), P2(0) . . .

converges to the least solution.

15

Some observations

No closed-form solution: The least solution of the equations can be a tuple of
algebraic numbers of arbitrary degree

Slow convergence: We may need 2n applications of P to gain n-bits of precision

Very small and large probabilities: The probability of [pXq] in a PDS of size n
may be as small as 1/22n

or as large as 1− 1/22n

16

Checking reachability properties

Theorem: The problem [pXq]
?
≤ ρ can be solved in PSPACE for every 0 ≤ ρ ≤ 1

Reduction to the decision problem for the existential theory of the reals

Theorem: The SQUARE-ROOT-SUM problem is polynomially reducible to the

problem [pXq]
?
≥ 1

Given: (d1, . . . , dn) ∈ INn and k ∈ IN

Decide whether:
n∑

i=1

√
di ≤ k

Theorem: The problem [pXq]
?
≥ 1 can be solved in PTIME for one-state PPDS

(or even for single-exit RSMs)

17

Numerical computation

Newton’s method to solve x = F(x):

xk+1 := xk − (F ′(xk))
−1 · F(xk)

where

F ′(x) =


∂f1
∂x1

. . . ∂f1
∂xn

...
∂fn
∂x1

. . . ∂fn
∂xn


Theorem: Newton’s method (multivariate) converges monotonically to the least
fixed point of x = P(x)

Newton’s method converges fast for typical examples (but no bounds yet!)

18

Checking repeated reachability (qualitative)

• Given: an initial configuration p0X0, a control state pr

• Decide whether: pr is repeatedly reached w.p.1, i.e.
whether the runs that visit infinitely many configurations of the form prα

have measure 1

We construct a finite Markov chain M with initial state s0 s.t.

pr is repeatedly reached from p0X0 w.p.1
⇐⇒

certain states of M are repeatedly reached from s0 w.p.1

that can be decided using grapth-theoretical methods

19

Minima of an infinite run

Let w = p0α0 p1α1 p2α2 · · · be an infinite run of a PPDS

piαi is a minimum of w if |αi | ≥ |αj | for all j ≥ i
(i.e., if αi “stays forever in the stack”)

Extract from w the subsequence pm1αm1 pm2αm2 . . . of minima

The i-th minimum of w is the i-th configuration of the subsequence of minima

20

1 92 3 4 5 6 7 8

height
Stack

Time

21

The memoryless property

Given a configuration c = pXα, let pX be the head and α the tail of c

Theorem (loosely formulated):
For every i ≥ 1, the probability that the i + 1-th minimum of a run has head pX
depends only on the head of the i-th minimum (and is in particular independent
of i).

We construct a Markov chain (not yet the one we want!) with

• the possible heads as states,

• transition probabilities given by:

pX x−−−→ qY if x is the probability of, starting from a minimum with
head pX , reaching the next minimum at a configuration with head qY

22

Computing the transition probabilities

Let [pX ⇒ qY] be the probability of pX −−→ qY in the new Markov chain

Define [qY↑] = 1−
∑
r∈P

[qYr]

(i.e., [qY↑] is the probability that a run starting at qY does not terminate)

Theorem:

[pX ⇒ qY] =
∑

pX
x

↪−→rZY

x · [rZq] · [qY↑] +
∑

pX
x

↪−→qYZ

x · [qY↑]

23

The finite Markov chain for the rep. reach. problem

States of the form (pX , b) x−−−→(qY , b′), where b, b′ booleans,

Transition probabilities given by:

- (pX , b) x−−−→(qY ,1) if x as above, but requiring that pr is visited between
the two minima, and

- (pX , b) x−−−→(qY ,0) if x as above, but requiring that pr is not visited
between the two minima

Theorem: The state pr is repeatedly reachable w.p.1 iff the finite Markov chain
above has a unique bottom s.c.c., and this s.c.c. contains a state of the form
(pX ,1) for some pX

Corollary: The (qualitative and quantitative) repeated reachability problem can be
solved in PSPACE

24

Results on checking Büchi specifications

Theorem: The qualitative (quantitative) model-checking problem for deterministic
Büchi specifications can be solved by an algorithm using polynomial space in the
size of the PPDS and linear time in the size of the Büchi automaton automaton

Theorem: The qualitative (quantitative) model-checking problem for arbitrary
Büchi specifications can be solved by an algorithm using polynomial space in the
size of the PPDS and exponential time in the size of the Büchi automaton

25

Checking PCTL specifications

Syntax:

ϕ ::= tt | a | ¬ϕ | ϕ1 ∧ ϕ2 | X≥%ϕ | ϕ1U
≥%ϕ2

where a is an atomic proposition and ρ is a probability

Semantics: Let [[ϕ]] denote the set of states satisfying φ

[[X≥%ϕ]] = {pα | P(Run(pα,X[[ϕ]])) ≥ % }
[[ϕ1U

≥%ϕ2]] = {pα | P(Run(pα, [[ϕ1]]U[[ϕ2]])) ≥ % }

Qualitative fragment of PCTL: ρ = 1

26

Model checking the qualitative fragment

In the finite-state case:

• Compute the set of states satisfying the subformulas of a formula

• Derive from them the set of states satisfying the formula

Problem: The set of states satisfying the subformulas can be infinite

Theorem: Let ϕ be a qualitative PCTL formula, and let ν be a regular valuation.
The set of configurations that satisfy ϕ under the valuation ν is effectively regular

Unfortunately (see counterexample in paper), the theorem no longer holds for
general PCTL formulas

27

Theorem: The qualitative model-checking problem for PCTL and pushdown
systems is EXPTIME-hard and solvable in EXPSPACE.

Theorem: The quantitative model-checking problem for PCTL is undecidable

Good approximation algorithms for one-state PPDSs (single-exit RSMs)

28

Conclusions

Probabilistic verification is feasible for models beyond while-programs

Very nice mathematics!

Key point: convergence rate of numerical algorithms

Very likely to have good applications for software models (polynomial
procedures)

Applicability to ‘large’ randomized algorithms remains to be seen

29

The probability space

Run: maximal path of configurations (infinite or finite but ending at configuration
with empty stack)

Sample space: runs starting at an initial configuration p0α0

σ-algebra: generated by the basic cilinders Run(w), the set of runs that start
with the finite sequence w of configurations.

Probability function: the probability of Run(w) is the product of the probabilities
associated to the sequence of rules that ‘generate’ w

30

