
An Automata-Theoretic Approach

to

Software Model Checking

Javier Esparza

Software Reliability and Security Group

Institute for Formal Methods in Computer Science

University of Stuttgart

Automatic verification using model checking

Initiated in the early 80s in USA and France

Exhaustive examination of the state space using (hopefully) clever techniques

Very successful in hardware or “low-level” software

ACM’s 2001 Software System Prize awarded to SPIN (other winners: Unix,
TeX, PostScript, the World Wide Web, Java, . . .)

Floating-point bugs found in the design of the Pentium 4 processor [Bentley,
DAC2001]

1

Automatic verification using model checking

Initiated in the early 80s in USA and France

Exhaustive examination of the state space using (hopefully) clever techniques

Very successful in hardware or “low-level” software

ACM’s 2001 Software System Prize awarded to SPIN
(other winners: Unix, TeX, PostScript, the World Wide Web, Java, . . .)

Floating-point bugs found in the design of the Pentium 4 processor
[Bentley, DAC2001]

2

Automatic verification using model checking

Initiated in the early 80s in USA and France

Exhaustive examination of the state space using (hopefully) clever techniques

Very successful in hardware or “low-level” software

ACM’s 2001 Software System Prize awarded to SPIN
(other winners: Unix, TeX, PostScript, the World Wide Web, Java, . . .)

Floating-point bugs found in the design of the Pentium 4 processor
[Bentley, DAC2001]

3

Automatic verification using model checking

Initiated in the early 80s in USA and France

Exhaustive examination of the state space using (hopefully) clever techniques

Very successful in hardware or “low-level” software

ACM’s 2001 Software System Prize awarded to SPIN
(other winners: Unix, TeX, PostScript, the World Wide Web, Java, . . .)

Floating-point bugs found in the design of the Pentium 4 processor
[Bentley, DAC2001]

4

An excerpt from [Bentley 2001]

The FADD instruction had a bug where, for a specific combination of source
operands, the 72 bit FP-address was setting the carryout bit to 1 when there was
no actual carryout

The FMUL instruction had a bug where, when the rounding mode was set to
“round up”, the sticky bit was not set correctly for certain combinations of
operand mantissa values, specifically:

src1[67 : 0] := X∗2(i + 15) + 1∗2i

src2[67 : 0] := Y ∗2(j + 15) + 1∗2j

where i + j = 54 and X , Y are integers that fit in the 68-bit range

Either of these bugs could easily have gone undetected not just in pre-silicon
environment but in post-silicon testing also. Had they done so, we would have
faced the prospect of a recall similar to the Pentium processor’s FDIV problem in
1994.

5

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software

Three main research questions:

Integration of the techniques in the system development process
(requirements, refinement, testing)

- PathStar [Holzmann, Smith]: Checking Lucent’s PathStar access server

- Slam [Ball, Rajamani et al.]: Checking Windows XP drivers

Automatic extraction of models from code

- Work of the abstract interpretation and static analysis community

- Bandera [Hatcliff et al.]: from Java code to model-checkable models
through abstraction/static analysis

Exploration of infinite-state spaces

6

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software

Three main research questions:

Integration of the techniques in the system development process
(requirements, refinement, testing)

- PathStar [Holzmann, Smith]: Checking Lucent’s PathStar access server

- Slam [Ball, Rajamani et al.]: Checking Windows XP drivers

Automatic extraction of models from code

- Work of the abstract interpretation and static analysis community

- Bandera [Hatcliff et al.]: from Java code to model-checkable models
through abstraction/static analysis

Exploration of infinite-state spaces

7

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software

Three main research questions:

Integration of the techniques in the system development process
(requirements, refinement, testing)

- PathStar [Holzmann, Smith]: Checking Lucent’s PathStar access server

- Slam [Ball, Rajamani et al.]: Checking Windows XP drivers

Automatic extraction of models from code

- Work of the abstract interpretation and static analysis community

- Bandera [Hatcliff et al.]: from Java code to model-checkable models
through abstraction/static analysis

Exploration of infinite-state spaces

8

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software

Three main research questions:

Integration of the techniques in the system development process
(requirements, refinement, testing)

- PathStar [Holzmann, Smith]: Checking Lucent’s PathStar access server

- Slam [Ball, Rajamani et al.]: Checking Windows XP drivers

Automatic extraction of models from code

- Work of the abstract interpretation and static analysis community

- Bandera [Hatcliff et al.]: from Java code to model-checkable models
through abstraction/static analysis

Exploration of infinite-state spaces

9

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software

Three main research questions:

Integration of the techniques in the system development process
(requirements, refinement, testing)

- PathStar [Holzmann, Smith]: Checking Lucent’s PathStar access server

- Slam [Ball, Rajamani et al.]: Checking Windows XP drivers

Automatic extraction of models from code

- Work of the abstract interpretation community

- Bandera [Hatcliff et al.]: from Java code to model-checkable models
through abstraction/static analysis

Exploration of infinite-state spaces

10

Software model checking

Challenge: develop model-checking techniques for ‘higher-level’ software

Three main research questions:

Integration of the techniques in the system development process
(requirements, refinement, testing)

- PathStar [Holzmann, Smith]: Checking Lucent’s PathStar access server

- Slam [Ball, Rajamani et al.]: Checking Windows XP drivers

Automatic extraction of models from code

- Work of the abstract interpretation community

- Bandera [Hatcliff et al.]: from Java code to model-checkable models
through abstraction/static analysis

Exploration of infinite-state spaces

11

Integration in the system development process

PathStar: Checking Lucent’s Path-
Star access server

• One system
• Verification interacts with
design (300 versions)
• Highly concurrent, challenging
code
• Complex specification
(80/200 properties)

Slam: Checking Windows XP
drivers

• Many systems
• Post-mortem verification

• Sequential, “straightforward”
code
• Simple specification
(correct locking/unlocking)

12

Sources of infinity in software systems

Data manipulation: integers, lists, trees, more general pointer structures, . . .

Control structures: procedures , process creation, . . .

Asynchronous communication: unbounded FIFO queues

Parameters: number of processes, duration of delays . . .

Real-time: discrete or dense domains

13

Current approach of most of (?) the ISMC community

Model data abstractions of the program by means of (networks of) extended
automata

(For the purpose of this talk, all but one source of infinity must be abstracted)

Using the automata theoretic-approach to model checking, reduce the
verification problem to reachability or repeated reachability problems

Develop algorithms or semi-algorithms for these problems using symbolic search
and accelerations

Reintroduce the abstracted data incrementally by means of predicate abstraction
and counterexample-guided abstraction refinement

14

Extended automata

Automata with transitions guarded by and operating on data structures

Systems Automata Data structure Transition

Procedures Pushdown automata stack q top=a−−−−−→
a/ba

q′

Multithreads (Ext. of) Petri nets counters q
x1=0−−−−−−→

x2:=x2+x3
q′

Timed systems Timed automata clocks q c1−c2>1−−−−−−−→
c1:=0

q′

Protocols FIFO automata queues q l 6=ε−−−−−−→
l?x

q′

15

First example: Drawing skylines

void m() { void s() {
if (?) { if (?) return;

s(); right(); up(); m(); down();

if (?) m(); }
} else {

up(); m(); down(); main() {
} s();

} }

16

Model

void s() { var st: stack of {s0, . . . , s5, . . .}

s0: if (?) s1: return; q
top=s0−−−−−→

s0/s1(s2)
q q top=s1−−−−−→

s1/ε
q

s2: up(); q top=s2−−−−−→
s2/up0 s3

q

s3: m(); q top=s3−−−−−→
s3/m0 s4

q

s4: down(); s5: q
top=s4−−−−−−−→

s4/down0 s5
q q top=s5−−−−−→

s5/ε
q

}

Local variables (l1, . . . , lk) −→ stack symbols (si , vl1, . . . , vlk)

Global variables (g1, . . . , gm) −→ control states (vg1, . . . , vgm)

17

Second example: Fischer’s mutex protocol

A simplified version (so that the analysis can be visualized in one slide . . .)

var v: {1,2 } init 1;

delay < 1; delay < 1;

v:= 1; v:= 2;

delay > 1; delay > 1;

if v = 1 then goto cs1 if v = 2 then goto cs2

18

Model

var v : {1, 2} init 1

var c1, c2 : clock init 0

A1 B1 CS1

A2 B2 CS2

c1 < 1
v := 1, c1 := 0

c1 > 1 ∧ v = 1

c2 < 1
v := 2, c2 := 0

c2 > 1 ∧ v = 2

Delays can be modelled with nondeterministic selfloops

Reducible to one single automaton with 9 states of the form (l1, l2)

19

Third example: A sliding window protocol

s1

s2s3

r1

r2r3

?a3 !m1 !m2

?a2

!m3 !m1 ?a1

!m2 !m3

?m3

?m2

!a3

!a1

?m1!m3

?m2

?m1 !a2

?a1

?a2 ?a3

?a2

?a1

?a3 ?m1

?m2

?m3

20

Other models

Multithread programs → automata extended with counters

• Guards: c > 0

• Operations: c := c + 1, c := c − 1, c1 := c1 + c2

Dynamic networks → automata extended with graph transformation rules

• Guards: graph contains fixed subgraph

• Operation: replace the subgraph by another fixed graph

21

The automata-theoretic approach to specifications

Define the executions of an extended automaton as sequences of
states/transitions, hiding the information about variables

Model a property as a finitary (safety) or infinitary (liveness) regular language D
of dangerous executions

System S −→ Extended automaton AS

Dang. exec. D −→ Automaton AD

L(AS) ∩ D = ∅ iff L(AS ×AD) = ∅

So the model-checking problem is reduced to the emptiness problem of
extended automata [Vardi, Wolper]

22

In turn, the emptiness problem is reducible to:

• Reachability

Given: system S, sets I and F of initial and final configurations of AS
To decide: if F can be reached from I,
i.e., if there exist i ∈ I and f ∈ F such that i →∗ f

• Repeated reachability

Given: System S, sets I and F of initial and final configurations of AS
To decide: if F can be repeatedly reached from I,
i.e. if there exist i ∈ I and f1, f2, . . . ∈ F such that i →∗ f1 →∗ f2 · · ·

Observe: I and F can be infinite

23

Symbolic search

A general framework for the reachability problem

Let post(C) denote the immediate successors of a (possibly infinite!) set C of
configurations

Forward symbolic search

Initialize C := I

Iterate C := C ∪ post(C) until

C ∩ F 6= ∅; return “reachable”, or

a fixpoint is reached; return “non-reachable”

Backward search defined similarly

Question: when is symbolic search effective?

24

Symbolic search effective if . . .

. . . a class C of (possibly infinite) sets of configurations can be found such that:

1. each C ∈ C has a finite representation

2. all operations and guard evaluations (i.e., C := C ∪ post(C), C ∩ F = ∅, set
containment) can be effectively computed

3. any chain C1 ⊆ C2 ⊆ C3 . . . reaches a fixpoint after finitely many steps

(1)–(2) for semi-algorithm, (3) guarantees termination

25

Symbolic reachability for timed automata

Two clock vectors t = (t1, . . . , tn) and u = (u1, . . . , un) of a timed automaton
are time-equivalent if they satisfy the same conditions of the form

xi ≤ n and xi − xj ≤ n

for every n less than or equal to the maximal delay in the syntactic description of
the automaton (delays are assumed to be integer)

Two configurations c = 〈q, t〉 and c′ = 〈q′,u〉 are equivalent if q = q′

and t and q are time-equivalent

An equivalence class of configurations is called a region

We choose C as the powerset of the set of regions

26

Observe: the number of regions is exponential in the number of clocks and on
the number of digits of the maximal delay, but finite

Theorem [Alur, Dill 90]: The powerset of regions satisfies conditions (1), (2), (3)

(1): Regions are finitely represented by their defining equations

(2): If C is a set of regions, then C ∪ post(C) is also a set of regions

(3): Every increasing chain of sets of regions reaches a fixpoint, because the
number of regions is finite

27

(One half of) The region graph of Fischer’s protocol

A1, A2, v = 1
x = y = 0

A1, A2, v = 1
0 < x = y < 1

A1, A2, v = 1
x = y = 1

A1, A2, v = 1
1 < x, y

A1, B2, v = 2
x = y = 0

A1, B2, v = 2
0 < x < 1, y = 0

A1, B2, v = 2
0 < y < x < 1

A1, B2, v = 2
0 < y < x = 1

A1, B2, v = 2
0 < y < 1 < x

A1, B2, v = 2
y = 1 < x

A1, B2, v = 2
1 < x, y

A1, CS2, v = 2
1 < x, y

28

Other positive results

Model Source of inf. Class C For./Back.

Timed automata Time Regions (or zones) For./Back.

Ext. Petri nets Parameters Upward-closed sets Backward

Lossy channels asynchronous comm. Upward-closed sets Backward

Timed automata: Alur, Dill, Henzinger, Larsen, Sifakis, Yovine

Ext. Petri nets: Abdulla, Bouajjani, Delzanno, E. , Finkel, Raskin . . .

Lossy channels: Abdulla, Bouajjani, Cecé, Finkel, Jonsson, Schnoebelen . . .

29

Symbolic reachability for pushdown automata

Configurations are pairs 〈q, w〉, where w is a word of stack symbols

Idea: describe (possibly infinite) regular sets of stack words by finite automata

We choose C as the regular sets of configurations

Symbolic reachability satisfies (1) and (2)

Property (3) fails: not every chain of regular sets reaches a fixpoint

Observe: Since a configuration only has a finite number of successors,
during the computation the current regular set C is always finite

However, the fixpoint is regular:

If C is a regular set of configurations, post∗(C) is also regular [Büchi 64]

30

Accelerations

A loop is a sequence C σ−→ post[σ](C) such that

C σ−→ post[σ](C)
σ−→ post[σ2](C)

σ−→ post[σ3](C) · · ·

Examples: 〈q, γ〉 σ−→ 〈q, γv〉 in pushdown automata

M σ−→ M ′ ≥ M in Petri nets

Acceleration: given a loop C σ−→ post[σ](C) , replace post[σ](C) by

X = post[σ∗](C) = C ∪ post[σ](C) ∪ post[σ2](C) ∪ . . .

Approach:

• find a suitable class of loops such that post[σ∗](C) belongs to C

• find algorithms to compute post[σ∗](C)

31

An acceleration for pushdown automata

Without acceleration the automata for C1 ⊆ C2 ⊆ C3 . . . remain acyclic and the
number of states can grow unboundedly

Class of loops for the acceleration: all of the form 〈q, γ〉 σ−→ 〈q, γv〉

Special features of pushdown automata lead to a ‘magic’ acceleration algorithm
[Book,Otto 83][E.,Hansel,Rossmanith,Schwoon 2000]

• start with the automaton accepting the initial set of configurations
(often a singleton);

• add a fixed number of new states (one per procedure);

• add new transitions following a simple rule and “reusing” the old states

32

Reachable configurations of the plotter program

q 〈q,m0〉 〈q, s0〉

〈q, u0〉

〈q, d0〉

〈q, r0〉

up0

down0

right0

m0. . .m7

s0. . .s5

, main1main0

s5

m4

m0,m1

main0

s4

s1

s1

m1

r5

33

Complexity

Complexity of the computation of post∗:

Linear in the size of the control-flow

Linear in the number of procedures

A new local boolean variable can multiply the running time by a factor 4

A new global boolean variable can multiply the running time by a factor 8

34

Other terminating accelerations

Model Source of inf. Class C Forw./Backw.

PA-systems Procedures + process creation, Reg. sets (trees) Forw./Backw.

no global variables,

no sync.

PAD-systems PA + global variables Reg. sets (trees) Forw./Backw.

PA-systems: [E., Podelski 00]

PAD-systems: [Bouajjani, Touili 03]

35

Symbolic reachability for lossy channel systems

Configurations are tuples 〈q,w〉 where q is a control state and
w = (w1, . . . , wn) is a vector of queue contents

We choose C as the set of simple regular expressions (SREs)

Atomic expression: (a + ε) | (a1 + . . . + am)∗

Product: e1e2 . . . en

SRE: p1 + . . . + pn

SREs satisfy conditions (1) and (2), but not (3)

The fixpoint is an SRE, but this time it cannot be effectively computed!

36

An acceleration for lossy channel systems

Theorem [Abdulla, Bouajjani, Jonsson 98]: For any loop σ of a lossy channel
system and any SRE r , the set post[σ∗](r) is an SRE that can be computed in
quadratic time in the size of r

Use in verification algorithms:

• Preselect a set of loops (in our case, those corresponding to simple cycles in
the syntactic description of the lossy channel system)

• Given a set of configurations, compute first the effect of executing each of the
loops infinitely often, and then compute for each transition the effect of
computing it

• Pray for termination or apply widening techniques losing precision

37

Channel contents of the sliding window protocol

States Mess. channel Ack. channel

s1, r1 (m2 + m3)
∗(m1 + m3)

∗(m1 + m2)
∗ a∗3

s1, r2 (m1 + m3)
∗(m1 + m2)

∗ a∗3a∗1
s1, r3 (m1 + m2)

∗ a∗3a∗1a∗2
s2, r1 (m2 + m3)

∗ a∗1a∗2a∗3
s2, r2 (m1 + m3)

∗(m1 + m2)
∗(m2 + m3)

∗ a∗1
s2, r3 (m1 + m2)

∗(m2 + m3)
∗ a∗1a∗2

s3, r1 (m2 + m3)
∗(m1 + m3)

∗ a∗1a∗2
s3, r2 (m1 + m3)

∗ a∗2a∗3a∗1
s3, r3 (m1 + m2)

∗(m2 + m3)
∗(m1 + m3)

∗ a∗2

38

Other accelerations without termination guarantee

Model Source of inf. Class C Forw./Backw.

Ext. Petri nets Parameters UC sets Forw.

Perfect FIFO channels asynchronous comm. CREs Forw.

Graph trans.systems process creation + mobility NoNameYet Forw.

Ext. Petri nets: Delzanno, Raskin et al.

Perfect channels: Abdulla, Bouajjani, Finkel, Godefroid, Habermehl, Wolper et al.

Graph transformation systems: Baldan, Corradini, König

39

Repeated reachability in our examples

Easy for timed automata

Requires some more effort for pushdown automata

Undecidable for lossy channel systems, even though reachability decidable

40

Counterexample-guided abstraction refinement

Initially: abstract model (all behaviors of the system and many more)

Iterate:

- Check if property holds for the current model

- If it holds, report “PROPERTY HOLDS”

Otherwise:

- Get counterexample (model checking) and try to execute it in system

- If execution succeeds: report “PROPERTY FAILS”

Otherwise:

- Identify guard G at which execution can’t be continued
(symbolic execution!)

- Add a boolean variable that “keeps track of G’s value”
(theorem proving)

41

Based on static analysis/ abstract interpretation ideas, but adds iterative
refinement of abstractions

Exploits the main strength of model checking: finding counterexamples

“Fault tolerant” with respect to the theorem prover

At the basis of

• SLAM Microsoft Redmond

• BLAST Berkeley/Lausanne

• MAGIC CMU

• SAL SRI

42

Tools and experiments on Stuttgart’s results

Technique for pushdown automata implemented in

• the MOPED tool [Schwoon], and

• the library on Weighted Pushdown Systems (WPD) [Reps, Schwoon]

and by Chen, Wagner in the MOPS tool

Case studies and applications of MOPED/WPD

• MOPED in Slam

• Used by IST-Project VerifiCard to verify Smart Cards (Java)

• Used at CMU for verification of exception constructs in Java programs

• WPD used as support for the SPKI/SDSI authorization scheme

43

Le moyen de ennuyer est de vouloir tout dire.

The secret of being a bore is to tell everything.

Voltaire

44

