Beyond Big-Oh analysis in automata theory

Javier Esparza

Foundations of Software Reliability Group
Technische Universitat Minchen

Javier Esparza Beyond Big-Oh analysis

A bit of satire ...

Theoretical computer scientists as classifiers. J

Javier Esparza Beyond Big-Oh analysis

A bit of satire ...

Theoretical computer scientists as classifiers.)

@ A theoretical computer scientist (TCS) is a (possibly
non-terminating) algorithm that gets a problem P as input
and outputs a lower bound ©(LB) and an upper bound
O(UB).

Javier Esparza Beyond Big-Oh analysis

A bit of satire ...

Theoretical computer scientists as classifiers.)

@ A theoretical computer scientist (TCS) is a (possibly
non-terminating) algorithm that gets a problem P as input
and outputs a lower bound ©(LB) and an upper bound
O(UB).

@ ATCS is sober if LB < UB, otherwise is drunk.

Javier Esparza Beyond Big-Oh analysis

A bit of satire ...

Theoretical computer scientists as classifiers.)

@ A theoretical computer scientist (TCS) is a (possibly
non-terminating) algorithm that gets a problem P as input
and outputs a lower bound ©(LB) and an upper bound
O(UB).

@ ATCS is sober if LB < UB, otherwise is drunk.

@ A TCS is good iff it writes papers that deserve publishing.

Javier Esparza Beyond Big-Oh analysis

A bit of satire ...

Theoretical computer scientists as classifiers.)

@ A theoretical computer scientist (TCS) is a (possibly
non-terminating) algorithm that gets a problem P as input
and outputs a lower bound ©(LB) and an upper bound
O(UB).

@ ATCS is sober if LB < UB, otherwise is drunk.

@ A TCS is good iff it writes papers that deserve publishing.

@ A paper deserves publishing iff it provides new or better
bounds.

Javier Esparza Beyond Big-Oh analysis

The classifier's world view

@ Once matching upper and lower bounds up to a
multiplicative constant have been found, going beyond is
tedious and uninteresting.

Javier Esparza Beyond Big-Oh analysis

The classifier's world view

@ Once matching upper and lower bounds up to a
multiplicative constant have been found, going beyond is
tedious and uninteresting.

v

@ Therefore, going beyond Big-Oh analysis is left to another
class of computer scientists called J

Javier Esparza Beyond Big-Oh analysis

The classifier's world view

@ Once matching upper and lower bounds up to a
multiplicative constant have been found, going beyond is
tedious and uninteresting.

v

@ Therefore, going beyond Big-Oh analysis is left to another
class of computer scientists called masochists. J

Javier Esparza Beyond Big-Oh analysis

The classifier's world view

@ Once matching upper and lower bounds up to a
multiplicative constant have been found, going beyond is
tedious and uninteresting.

v

@ Therefore, going beyond Big-Oh analysis is left to another
class of computer scientists called masochists. J

@ Implementing algorithms is a mechanical task. It brings a
theoretician neither new insights nor “scientific glory”. J

Javier Esparza Beyond Big-Oh analysis

The classifier's world view

@ Once matching upper and lower bounds up to a
multiplicative constant have been found, going beyond is
tedious and uninteresting.

v

@ Therefore, going beyond Big-Oh analysis is left to another
class of computer scientists called masochists. J

@ Implementing algorithms is a mechanical task. It brings a
theoretician neither new insights nor “scientific glory”. J

@ However, implementations are sometimes needed to
please reviewers and research councils. Fortunately, they
can be left to another class of human beings:

Javier Esparza Beyond Big-Oh analysis

The classifier's world view

@ Once matching upper and lower bounds up to a
multiplicative constant have been found, going beyond is
tedious and uninteresting.

@ Therefore, going beyond Big-Oh analysis is left to another
class of computer scientists called masochists. J

@ Implementing algorithms is a mechanical task. It brings a
theoretician neither new insights nor “scientific glory”. J

@ However, implementations are sometimes needed to
please reviewers and research councils. Fortunately, they
can be left to another class of human beings: students.

Javier Esparza Beyond Big-Oh analysis

A few alternative thesis

Javier Esparza Beyond Big-Oh analysis

A few alternative thesis

@ Theoretical computer scientists should provide efficient
algorithms for problems, not just classify them.

Javier Esparza Beyond Big-Oh analysis

A few alternative thesis

@ Theoretical computer scientists should provide efficient
algorithms for problems, not just classify them.

@ Classifications usually help, are but a first step.

Javier Esparza Beyond Big-Oh analysis

A few alternative thesis

@ Theoretical computer scientists should provide efficient
algorithms for problems, not just classify them.

@ Classifications usually help, are but a first step.

@ An efficient algorithm is not the same as an algorithm with
O(f(n)) runtime for a slowly growing f:

Javier Esparza Beyond Big-Oh analysis

A few alternative thesis

@ Theoretical computer scientists should provide efficient
algorithms for problems, not just classify them.

@ Classifications usually help, are but a first step.

@ An efficient algorithm is not the same as an algorithm with
O(f(n)) runtime for a slowly growing f:
- constants may matter,

Javier Esparza Beyond Big-Oh analysis

A few alternative thesis

@ Theoretical computer scientists should provide efficient
algorithms for problems, not just classify them.

@ Classifications usually help, are but a first step.

@ An efficient algorithm is not the same as an algorithm with
O(f(n)) runtime for a slowly growing f:
- constants may matter,
- runtime is not the only important parameter.

Javier Esparza Beyond Big-Oh analysis

A few alternative thesis

@ Theoretical computer scientists should provide efficient
algorithms for problems, not just classify them.

@ Classifications usually help, are but a first step.

@ An efficient algorithm is not the same as an algorithm with
O(f(n)) runtime for a slowly growing f:
- constants may matter,
- runtime is not the only important parameter.

@ Implementations very much help to reveal the problems of
seemingly efficient algorithms. They lead to better theory.

Javier Esparza Beyond Big-Oh analysis

A few alternative thesis

@ Theoretical computer scientists should provide efficient
algorithms for problems, not just classify them.

@ Classifications usually help, are but a first step.

@ An efficient algorithm is not the same as an algorithm with
O(f(n)) runtime for a slowly growing f:
- constants may matter,
- runtime is not the only important parameter.

@ Implementations very much help to reveal the problems of
seemingly efficient algorithms. They lead to better theory.

@ Automata theory for verification very much profits from
“veyond Big-Oh” analysis and prototype implementations.

v

Javier Esparza Beyond Big-Oh analysis

Javier Esparza Beyond Big-Oh analysis

@ Appetizer: Universality of finite automata

Javier Esparza Beyond Big-Oh analysis

@ Appetizer: Universality of finite automata
@ Main course: Emptiness of Buchi automata

Javier Esparza Beyond Big-Oh analysis

@ Appetizer: Universality of finite automata
@ Main course: Emptiness of Buchi automata
@ Dessert: Universal search

Javier Esparza Beyond Big-Oh analysis

Universality of finite automata)

Javier Esparza Beyond Big-Oh analysis

The problem

Given: a NFA A over alphabet %_.
Decide: is L(A) =X+ ?

Javier Esparza Beyond Big-Oh analysis

The problem

Given: a NFA A over alphabet %_.
Decide: is L(A) =X+ ?

Universality is PSPACE-complete. \

Javier Esparza Beyond Big-Oh analysis

The problem

Given: a NFA A over alphabet %_.
Decide: is L(A) =X+ ?

Universality is PSPACE-complete. l

Deterministic algorithm:

Determinize — complement — check for emptiness.

Javier Esparza Beyond Big-Oh analysis

The problem

Given: a NFA A over alphabet %_.
Decide: is L(A) =X+ ?

Universality is PSPACE-complete. l

Deterministic algorithm:

Determinize — complement — check for emptiness.

Complexity:

O(2141) time and space, and ©(2/4) for some family.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Javier Esparza Beyond Big-Oh analysis

End of the story?

Subsumption check [DeWDHRO06]:

If the powerset construction generates states Qi C Q,
redirect Q’s incoming arcs to Q; and remove Qb.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Subsumption check [DeWDHRO06]:

If the powerset construction generates states Qi C Q,
redirect Q’s incoming arcs to Q; and remove Qb.

Correctness

Javier Esparza Beyond Big-Oh analysis

End of the story?

Subsumption check [DeWDHRO06]:

If the powerset construction generates states Qi C Q,
redirect Q’s incoming arcs to Q; and remove Qb.

Correctness

@ Let B= Pow(A) (only reachable states).

Javier Esparza Beyond Big-Oh analysis

End of the story?

Subsumption check [DeWDHRO06]:

If the powerset construction generates states Qi C Q,
redirect Q’s incoming arcs to Q; and remove Qb.

Correctness

@ Let B= Pow(A) (only reachable states).
@ Recall: Lg(Q) = Ugeq La(q) for every state Q of B.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Subsumption check [DeWDHRO06]:

If the powerset construction generates states Qi C Q,
redirect Q’s incoming arcs to Q; and remove Qb.

Correctness

@ Let B= Pow(A) (only reachable states).
@ Recall: Lg(Q) = Ugeq La(q) for every state Q of B.
@ Recall: A universal iff Lg(Q) = X* for every state Q of B.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Subsumption check [DeWDHRO06]:

If the powerset construction generates states Qi C Q,
redirect Q’s incoming arcs to Q; and remove Qb.

Correctness

@ Let B= Pow(A) (only reachable states).
@ Recall: Lg(Q) = Ugeq La(q) for every state Q of B.
@ Recall: A universal iff Lg(Q) = X* for every state Q of B.

@ Assume Q; € Q.. We have Lg(Qq) C Lg(Q») and if B
universal then Lg(Qq) = Lg(Q).

Javier Esparza Beyond Big-Oh analysis

End of the story?

Subsumption check [DeWDHRO06]:

If the powerset construction generates states Qi C Q,
redirect Q’s incoming arcs to Q; and remove Qb.

Correctness

@ Let B= Pow(A) (only reachable states).

@ Recall: Lg(Q) = Ugeq La(q) for every state Q of B.

@ Recall: A universal iff Lg(Q) = X* for every state Q of B.

@ Assume Q; € Q.. We have Lg(Qq) C Lg(Q») and if B
universal then Lg(Qq) = Lg(Q).

@ Let B’ be the result of the operation. Then Lg C Lg and if
B universal then Lg = Lpg.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Subsumption check [DeWDHRO06]:

If the powerset construction generates states Qi C Q,
redirect Q’s incoming arcs to Q; and remove Qb.

Correctness

@ Let B= Pow(A) (only reachable states).
@ Recall: Lg(Q) = Ugeq La(q) for every state Q of B.
@ Recall: A universal iff Lg(Q) = X* for every state Q of B.

@ Assume Q; € Q.. We have Lg(Qq) C Lg(Q») and if B
universal then Lg(Qq) = Lg(Q).

@ Let B’ be the result of the operation. Then Lg C Lg and if
B universal then Lg = Lpg.

@ So B’ universal iff B universal iff A universal.

Javier Esparza Beyond Big-Oh analysis

Potential application to verification

Typical scenario

@ System: communicating automata A+, Ao, ..., Ap.

@ Specification (allowed behaviour): automaton B.

@ System’s behaviour: automaton A=A @ Ao ® ... ® Ap.
@ System correct if L(A) C L(B)

Javier Esparza Beyond Big-Oh analysis

Potential application to verification

Typical scenario

@ System: communicating automata A+, Ao, ..., Ap.

@ Specification (allowed behaviour): automaton B.

@ System’s behaviour: automaton A=A @ Ao ® ... ® Ap.
@ System correct if L(A) C L(B)

Usual approach: L(A) C L(B) iff L(A) N L(B)) =1

@ Compute A=A ®...® An. Possible blowup!

@ Check emptiness of A x B.

Javier Esparza Beyond Big-Oh analysis

Potential application to verification

Typical scenario

@ System: communicating automata A+, Ao, ..., Ap.

@ Specification (allowed behaviour): automaton B.

@ System’s behaviour: automaton A=A @ Ao ® ... ® Ap.
@ System correct if L(A) C L(B)

Usual approach: L(A) C L(B) iff LLA)NL(B)) =0
@ Compute A=A ®...® An. Possible blowup!
@ Check emptiness of A x B.

Alternative approach: L(A) C L(B) iff L(A) U L(B) =

@ Compute A=A & ... A,.
@ Check universality of A+ B. Possible blowup!

Javier Esparza Beyond Big-Oh analysis

Emptiness of Buchi automata)

Javier Esparza Beyond Big-Oh analysis

The problem

Given: a Blchi automaton A.
Decide: is L(A) =0 ?

Lassos

A is nonempty iff it contains an accepting lasso: a path leading
from some initial state to some accepting state, followed by a

cycle.

Javier Esparza Beyond Big-Oh analysis

A trivial quadratic algorithm

The algorithm

(1) Compute all reachable final states.

(2) For every final state q:
- check if g is reachable from itself.
- if so, stop and answer “nonempty”.
Answer “empty”.

Javier Esparza Beyond Big-Oh analysis

A trivial quadratic algorithm

The algorithm

(1) Compute all reachable final states.

(2) For every final state q:
- check if g is reachable from itself.
- if so, stop and answer “nonempty”.
Answer “empty”.

Complexity

@ (1) takes O(|A|) time.

Javier Esparza Beyond Big-Oh analysis

A trivial quadratic algorithm

The algorithm

(1) Compute all reachable final states.

(2) For every final state q:
- check if g is reachable from itself.
- if so, stop and answer “nonempty”.
Answer “empty”.

Complexity

@ (1) takes O(|A|) time.

@ (2) takes O(|A|?) time, and there is a family of graphs for
which it takes ©(|A|?).

Javier Esparza Beyond Big-Oh analysis

A first linear algorithm: double-DFS [CVWY91]

(1) Use DFS to compute a list o, o, . . ., a Of all reachable
accepting states

(2) Fori=1to k:
- use DFS to check if «; is reachable from itself

- if so, stop and answer “nonempty”.
Answer “empty”.

Javier Esparza Beyond Big-Oh analysis

A first linear algorithm: double-DFS [CVWY91]

(1) Use DFS to compute a list o, o, . . ., a Of all reachable
accepting states sorted in postorder.
(a state is added to list when backtracking from it)
(2) Fori=1to k:
- use a modified DFS to check if «; is reachable from itself
without visiting any state reachable from a4, ..., aj_1.

- if so, stop and answer “nonempty”.
Answer “empty”.

Javier Esparza Beyond Big-Oh analysis

A first linear algorithm: double-DFS [CVWY91]

(1) Use DFS to compute a list o, o, . . ., a Of all reachable
accepting states sorted in postorder.
(a state is added to list when backtracking from it)
(2) Fori=1to k:
- use a modified DFS to check if «; is reachable from itself
without visiting any state reachable from a4, ..., aj_1.

- if so, stop and answer “nonempty”.
Answer “empty”.

Javier Esparza Beyond Big-Oh analysis

Complexity

Time complexity

@ Phase (1) takes O(|A|) time.

Javier Esparza Beyond Big-Oh analysis

Time complexity

@ Phase (1) takes O(|A|) time.

@ Phase (2) takes O(|A|) time.
In the DFS for «; we backtrack whenever hitting states
visited during the former DFSs, and so every transition is

explored at most once.

Complexity

Javier Esparza

Beyond Big-Oh analysis

Time complexity

@ Phase (1) takes O(|A|) time.

@ Phase (2) takes O(|A|) time.
In the DFS for «; we backtrack whenever hitting states
visited during the former DFSs, and so every transition is

explored at most once.
@ Together: 2 post ops per (reachable) state.

Complexity

Javier Esparza

Beyond Big-Oh analysis

Complexity
Time complexity

@ Phase (1) takes O(|A|) time.

@ Phase (2) takes O(|A|) time.
In the DFS for «; we backtrack whenever hitting states
visited during the former DFSs, and so every transition is
explored at most once.

@ Together: 2 post ops per (reachable) state.

Space complexity

A\ | A\

Javier Esparza Beyond Big-Oh analysis

Complexity

Time complexity

@ Phase (1) takes O(|A|) time.

@ Phase (2) takes O(|A|) time.
In the DFS for «; we backtrack whenever hitting states
visited during the former DFSs, and so every transition is

explored at most once.
@ Together: 2 post ops per (reachable) state.

Space complexity

@ For each state we have three possible situations:
- not yet discovered by the first phase;
- discovered by the first, but not yet by the second;
- discovered by both phases.

A\

Javier Esparza Beyond Big-Oh analysis

Complexity

Time complexity

@ Phase (1) takes O(|A|) time.

@ Phase (2) takes O(|A|) time.
In the DFS for «; we backtrack whenever hitting states
visited during the former DFSs, and so every transition is

explored at most once.
@ Together: 2 post ops per (reachable) state.

Space complexity

@ For each state we have three possible situations:
- not yet discovered by the first phase;
- discovered by the first, but not yet by the second;

- discovered by both phases.
@ 2 additional bits per (reachable) state.

A\

Javier Esparza Beyond Big-Oh analysis

Correctness

If the algorithm answers “nonempty”, then A is nonempty. Easy. \

Javier Esparza Beyond Big-Oh analysis

Correctness

If the algorithm answers “nonempty”, then A is nonempty. Easy. \
Correctness |l
If Ais nonempty, then the algorithm answers “nonempty”.

Javier Esparza Beyond Big-Oh analysis

Correctness

If the algorithm answers “nonempty”, then A is nonempty. Easy.

Correctness |
If Ais nonempty, then the algorithm answers “nonempty”.

Proof:
@ Consider the case k = 2 (two final states «aq, a»).

Javier Esparza Beyond Big-Oh analysis

Correctness

If the algorithm answers “nonempty”, then A is nonempty. Easy.

Correctness |
If Ais nonempty, then the algorithm answers “nonempty”.

Proof:
@ Consider the case k = 2 (two final states «aq, a»).
@ |f some cycle contains «4, the algorithm will detect it.

Javier Esparza Beyond Big-Oh analysis

Correctness

If the algorithm answers “nonempty”, then A is nonempty. Easy.

Correctness |
If Ais nonempty, then the algorithm answers “nonempty”.

Proof:
@ Consider the case k = 2 (two final states «aq, a»).
@ |f some cycle contains «4, the algorithm will detect it.

@ If some cycle contains ap, and no transition of the cycle is
reachable from «4, the algorithm will detect it.

Javier Esparza Beyond Big-Oh analysis

Correctness

If the algorithm answers “nonempty”, then A is nonempty. Easy.

Correctness |
If Ais nonempty, then the algorithm answers “nonempty”.

Proof:
@ Consider the case k = 2 (two final states «aq, a»).

@ If some cycle contains a4, the algorithm will detect it.

@ If some cycle contains ap, and no transition of the cycle is
reachable from «4, the algorithm will detect it.

@ Potential problem: some cycle contains a», some transition
of the cycle is reachable from «;.

Javier Esparza Beyond Big-Oh analysis

Correctness

If the algorithm answers “nonempty”, then A is nonempty. Easy.

Correctness |
If Ais nonempty, then the algorithm answers “nonempty”.

Proof:
@ Consider the case k = 2 (two final states «aq, a»).

@ If some cycle contains a4, the algorithm will detect it.

@ If some cycle contains ap, and no transition of the cycle is
reachable from «4, the algorithm will detect it.

@ Potential problem: some cycle contains a», some transition
of the cycle is reachable from «;.

@ Call these cycles blocked.

Javier Esparza Beyond Big-Oh analysis

@ Solution: guarantee that if there are blocked cycles, then
some cycle contains «;.
Because cycles containing «y are always detected!

Javier Esparza Beyond Big-Oh analysis

@ Solution: guarantee that if there are blocked cycles, then
some cycle contains «;.
Because cycles containing «y are always detected!

@ If there is a blocked cycle, then a4 ~ as.

@ If (q ~ as A as ~» aq) then some cycle contains «;.
@ So it suffices to guarantee: if aq ~» as then as ~~ aj.
@ We show that postorder implies this.

Javier Esparza Beyond Big-Oh analysis

@ Solution: guarantee that if there are blocked cycles, then
some cycle contains «;.
Because cycles containing «y are always detected!

If there is a blocked cycle, then a4 ~ as.

If (aty ~ as A ao ~~ 1) then some cycle contains aj4.
So it suffices to guarantee: if oy ~~» as then as ~ ay.
We show that postorder implies this.

@ Look at DFS as a recursive procedure dfs(q).
@ Let ca(q) denote the time at which dfs(q) is called.

@ Let ret(q) denote the time at which dfs(q) returns.
(The search backtracks from q.)

Javier Esparza Beyond Big-Oh analysis

Solution: guarantee that if there are blocked cycles, then
some cycle contains «;.
Because cycles containing «y are always detected!

If there is a blocked cycle, then a4 ~ as.

If (aty ~ as A ao ~~ 1) then some cycle contains aj4.
So it suffices to guarantee: if oy ~~» as then as ~ ay.
We show that postorder implies this.

Look at DFS as a recursive procedure dfs(q).
Let ca(q) denote the time at which dfs(q) is called.

Let ret(q) denote the time at which dfs(q) returns.
(The search backtracks from q.)

Postorder assumption: ref(aq) < ret(asz).

Javier Esparza Beyond Big-Oh analysis

Assume ret(aq) < ret(as). If aq ~ as then as ~~ aj.

Javier Esparza Beyond Big-Oh analysis

Assume ret(aq) < ret(az). If aq ~ as then as ~ aj.

@ By proper nesting of calls we have either:
- ca(aq) < ret(aq) < calan) < ret(as) or
- ca(ae) < calaq) < ret(aq) < ret(az)

Javier Esparza Beyond Big-Oh analysis

Assume ret(aq) < ret(az). If aq ~ as then as ~ aj.

@ By proper nesting of calls we have either:
- ca(aq) < ret(aq) < calan) < ret(as) or
- ca(ae) < calaq) < ret(aq) < ret(az)

@ Case 1: ca(aq) < ret(aq) < ca(az) < ret(ap).
Then aq 4 as.

Javier Esparza Beyond Big-Oh analysis

Assume ret(aq) < ret(az). If aq ~ as then as ~ aj.

@ By proper nesting of calls we have either:
- ca(aq) < ret(aq) < calan) < ret(as) or
- ca(ae) < calaq) < ret(aq) < ret(az)
@ Case 1: ca(aq) < ret(aq) < ca(az) < ret(ap).
Then aq 4 as.

@ Case 2: ca(an) < ca(aq) < ret(aq) < ret(ap).
Then as ~ ay.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Javier Esparza Beyond Big-Oh analysis

End of the story?

@ Double-DFS requires to explore every transition at least
once.
(Cannot terminate before the end of the first search!)

Javier Esparza Beyond Big-Oh analysis

End of the story?

@ Double-DFS requires to explore every transition at least
once.
(Cannot terminate before the end of the first search!)

@ Double-DFS inadequate for producing counterexamples:

Javier Esparza Beyond Big-Oh analysis

End of the story?

@ Double-DFS requires to explore every transition at least
once.
(Cannot terminate before the end of the first search!)

@ Double-DFS inadequate for producing counterexamples:
Counterexample: path to accepting state «; + cycle.

Javier Esparza Beyond Big-Oh analysis

End of the story?

@ Double-DFS requires to explore every transition at least

once.
(Cannot terminate before the end of the first search!)

@ Double-DFS inadequate for producing counterexamples:
Counterexample: path to accepting state «; + cycle.
Double-DFS requires to store paths for all accepting states.

Javier Esparza Beyond Big-Oh analysis

Solution: nested-DFS [CVWY91]

@ Interleave the two phases.

Javier Esparza Beyond Big-Oh analysis

Solution: nested-DFS [CVWY91]

@ Interleave the two phases.

@ At time ret(«;) interrupt the first search and launch the
second search for «;.

Javier Esparza Beyond Big-Oh analysis

Solution: nested-DFS [CVWY91]

@ Interleave the two phases.

@ At time ret(«;) interrupt the first search and launch the
second search for «;.

@ When the algorithm finds a cycle the call stack contains
- a path to the current final state «;, plus
- a path leading from «; to itself.

Javier Esparza Beyond Big-Oh analysis

Solution: nested-DFS [CVWY91]

@ Interleave the two phases.

@ At time ret(«;) interrupt the first search and launch the
second search for «;.

@ When the algorithm finds a cycle the call stack contains
- a path to the current final state «;, plus
- a path leading from «; to itself.

@ Counterexample: just pop the call stack!

Javier Esparza Beyond Big-Oh analysis

Solution: nested-DFS [CVWY91]

@ Interleave the two phases.

@ At time ret(«;) interrupt the first search and launch the
second search for «;.

@ When the algorithm finds a cycle the call stack contains
- a path to the current final state «;, plus
- a path leading from «; to itself.

@ Counterexample: just pop the call stack!

@ Correctness: Easy. The second searches are exactly as in
the double-DFS algorithm.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Javier Esparza Beyond Big-Oh analysis

End of the story?

A search algorithm for Buchi emptiness is optimal if it
terminates immediately after the set of transitions it has

explored contains an accepting lasso.
y

Javier Esparza Beyond Big-Oh analysis

End of the story?

A search algorithm for Buchi emptiness is optimal if it
terminates immediately after the set of transitions it has

explored contains an accepting lasso.

The nested-DFS algorithm is not optimal |

Javier Esparza Beyond Big-Oh analysis

Minor improvements

[Holzmann, Peled, Yannakakis 96]

If the second search finds a state that is currently in the call
stack of the first search, answer “nonempty”.

Javier Esparza Beyond Big-Oh analysis

Minor improvements

[Holzmann, Peled, Yannakakis 96]

If the second search finds a state that is currently in the call
stack of the first search, answer “nonempty”.

[Gastin, Moro, Zeitoun 04]

If the first search finds an accepting state that is currently in the
call stack, answer “nonempty”.

Javier Esparza Beyond Big-Oh analysis

Minor improvements

[Holzmann, Peled, Yannakakis 96]

If the second search finds a state that is currently in the call
stack of the first search, answer “nonempty”.

[Gastin, Moro, Zeitoun 04]

If the first search finds an accepting state that is currently in the
call stack, answer “nonempty”.

[Schwoon, E. 05]

These two improvements still require only 2 additional bits per
state: four-colour algorithm.

Javier Esparza Beyond Big-Oh analysis

But: the four-colour algorithm is still not optimal.)

Javier Esparza Beyond Big-Oh analysis

But: the four-colour algorithm is still not optimal.)

Are there optimal (linear-time) algorithms??

Javier Esparza Beyond Big-Oh analysis

SCC-based algorithms

Approach

@ ldentify the reachable (nontrivial) SCCs of A.
@ Check if some of them contains an accepting state.

Javier Esparza Beyond Big-Oh analysis

Tarjan’s algorithm for computing SCCs

Basic notions

@ Automaton A = dag of SCCs.

Javier Esparza Beyond Big-Oh analysis

Tarjan’s algorithm for computing SCCs

Basic notions

@ Automaton A = dag of SCCs.

@ Root of a SCC: the first node of the SCC discovered by the
DFS.
(The definition of root refers to a particular, fixed DFS-run!)

Javier Esparza Beyond Big-Oh analysis

Tarjan’s algorithm for computing SCCs

Basic notions

@ Automaton A = dag of SCCs.

@ Root of a SCC: the first node of the SCC discovered by the
DFS.
(The definition of root refers to a particular, fixed DFS-run!)

@ If pis a root, then at time ret(p) the DFS has discovered all
nodes of p’s SCC and its descendants in the dag.

v

Javier Esparza Beyond Big-Oh analysis

Tarjan’s algorithm for computing SCCs

Basic notions

@ Automaton A = dag of SCCs.

@ Root of a SCC: the first node of the SCC discovered by the
DFS.
(The definition of root refers to a particular, fixed DFS-run!)

@ If pis a root, then at time ret(p) the DFS has discovered all
nodes of p’s SCC and its descendants in the dag.

@ Push all discovered nodes in a new stack (Tarjan’s stack).

@ For every root p: at time ret(p), pop from Tarjan’s stack
until p is popped; the popped nodes constitute p's SCC.

v

Javier Esparza Beyond Big-Oh analysis

Tarjan and GOD's algorithm

GOD'’s contribution: Oracle
For a given state g oracle decides if g is a root.

’
2 push(q, Stack);

3 for each transition g — r

4 If r not yet explored then T(r)

5 If g is a root then

6 repeat s := pop(Stack) until s = q

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Problem

The algorithm must identify the roots of the SCCs.
But the SCCs are what we want to compute!

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Problem

The algorithm must identify the roots of the SCCs.
But the SCCs are what we want to compute!

Second idea

@ Annotate each state g with ca(q) and a lowlink-number
lowlink(q).
(Order induced by call numbers is all that matters)

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Problem

The algorithm must identify the roots of the SCCs.
But the SCCs are what we want to compute!

Second idea

@ Annotate each state g with ca(q) and a lowlink-number
lowlink(q).
(Order induced by call numbers is all that matters)

@ /owlink(q): lowest ca(r) of states r satisfying
- g and r lie in the same SCC, and
- r reachable from g through states not yet discovered
at time ca(q).

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Problem

The algorithm must identify the roots of the SCCs.
But the SCCs are what we want to compute!

Second idea

@ Annotate each state g with ca(q) and a lowlink-number
lowlink(q).
(Order induced by call numbers is all that matters)

@ /owlink(q): lowest ca(r) of states r satisfying
- g and r lie in the same SCC, and
- r reachable from g through states not yet discovered
at time ca(q).

@ lowlink(q) < ca(q) for every state q.

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Problem

The algorithm must identify the roots of the SCCs.
But the SCCs are what we want to compute!

@ Annotate each state g with ca(q) and a lowlink-number
lowlink(q).
(Order induced by call numbers is all that matters)

@ /owlink(q): lowest ca(r) of states r satisfying
- g and r lie in the same SCC, and
- r reachable from g through states not yet discovered
at time ca(q).

@ lowlink(q) < ca(q) for every state q.
@ Fact: lowlink(q) = ca(q) if and only if g is a root.

Javier Esparza Beyond Big-Oh analysis

Tarjan’s algorithm

lowlink(q) can be easily determined at time ret(q).

Javier Esparza Beyond Big-Oh analysis

Tarjan’s algorithm

lowlink(q) can be easily determined at time ret(q).

T(q)
push(q, Stack);

for each transition g — r
iIf r not yet explored then
T(r);
r.lowlink := min(q.lowlink, r.lowlink)
else if r € Stack then
r.lowlink := min(q.lowlink, r.ca)
If g.lowlink = g.ca then
repeat s := pop(Stack) until s = g

— OO0 NOO O HA~,WN —

o

Javier Esparza Beyond Big-Oh analysis

Geldenhuys and Valmari’s algorithm [GV04]

@ A direct modification of Tarjan’s algorithm for emptiness
checking is hon-optimal.

Javier Esparza Beyond Big-Oh analysis

Geldenhuys and Valmari’s algorithm [GV04]

@ A direct modification of Tarjan’s algorithm for emptiness
checking is hon-optimal.

@ Requires to completely explore an SCC before it is popped
from the stack.

v

Javier Esparza Beyond Big-Oh analysis

Geldenhuys and Valmari’s algorithm [GV04]

@ A direct modification of Tarjan’s algorithm for emptiness
checking is hon-optimal.

@ Requires to completely explore an SCC before it is popped
from the stack.

v

Main observation of [GV04]:

a belongs to a cycle iff T(a) reaches some state r satisfying
two conditions:

@ r € Stack, and
@ lowlink(r) < ca(a).

Javier Esparza Beyond Big-Oh analysis

Geldenhuys and Valmari’s algorithm [GV04]

Add a new parameter to the procedure to keep track of the last
visited accepting state. J

1 GV(q, a)

2 push(q, Stack);

3 for each transition g — r

4 If r not yet explored then

5 if r accepting then GV(r, r) else GV(r, a);
6 r.lowlink := min(q.lowlink, r.lowlink)

7 else if r € Stack then

8 iIf r.lowlink < «.ca then report “nonempty”;
9 r.lowlink := min(q.lowlink, r.ca)

10 If g.lowlink = q.ca then

13 repeat s := pop(Stack) until s = g

Javier Esparza Beyond Big-Oh analysis

End of the story?

Javier Esparza Beyond Big-Oh analysis

End of the story?

Time complexity
[GVO04] requires only one post op per state.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Time complexity
[GVO04] requires only one post op per state.

Space complexity

@ [GVO04] requires to store two numbers per state plus a third
number for Tarjan’s stack (3 - log n bits per state).

Javier Esparza Beyond Big-Oh analysis

End of the story?

Time complexity
[GVO04] requires only one post op per state.

Space complexity

@ [GVO04] requires to store two numbers per state plus a third
number for Tarjan’s stack (3 - log n bits per state).

@ Compare with 2 bits per state of nested-DFS or the
four-colour algorithm.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Time complexity
[GVO04] requires only one post op per state.

Space complexity

@ [GVO04] requires to store two numbers per state plus a third
number for Tarjan’s stack (3 - log n bits per state).

@ Compare with 2 bits per state of nested-DFS or the
four-colour algorithm.

Generalized Bichi automata
@ LTL — Buchi translations yield generalized BA.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Time complexity
[GVO04] requires only one post op per state.

Space complexity

@ [GVO04] requires to store two numbers per state plus a third
number for Tarjan’s stack (3 - log n bits per state).

@ Compare with 2 bits per state of nested-DFS or the
four-colour algorithm.

Generalized Buchi automata

@ LTL — Buchi translations yield generalized BA.

@ GBA with n states and k acceptings sets — BA with n- k
states. Expensive!

Javier Esparza Beyond Big-Oh analysis

End of the story?

Time complexity
[GVO04] requires only one post op per state.

Space complexity

@ [GVO04] requires to store two numbers per state plus a third
number for Tarjan’s stack (3 - log n bits per state).

@ Compare with 2 bits per state of nested-DFS or the
four-colour algorithm.

Generalized Buchi automata

@ LTL — Buchi translations yield generalized BA.

@ GBA with n states and k acceptings sets — BA with n- k
states. Expensive!

@ Neither nested-DFS nor GV can be extended to GBA.

Javier Esparza Beyond Big-Oh analysis

Do optimal algorithms exist that

Javier Esparza Beyond Big-Oh analysis

Do optimal algorithms exist that
@ require less memory, and

Javier Esparza Beyond Big-Oh analysis

Do optimal algorithms exist that
@ require less memory, and
@ can be easily extended to GBAs?

Javier Esparza Beyond Big-Oh analysis

Couvreur and Gabow’s algorithm [C99,G00]

Partition Stack into Roots and Nonroots, keeping the following
iInvariant:

Javier Esparza Beyond Big-Oh analysis

Couvreur and Gabow’s algorithm [C99,G00]

Partition Stack into Roots and Nonroots, keeping the following
iInvariant:

@ Roots contains all nodes that are roots
of the part of the graph explored so far .

@ Nonroots: contains all nodes that are non-roots
of the part of the graph explored so far .

Javier Esparza Beyond Big-Oh analysis

Couvreur and Gabow’s algorithm [C99,G00]

Partition Stack into Roots and Nonroots, keeping the following
iInvariant:

@ Roots contains all nodes that are roots
of the part of the graph explored so far .

@ Nonroots: contains all nodes that are non-roots
of the part of the graph explored so far .

@ Key insight: g is a root iff it is a root of the part of the graph
explored at time ret(q).

Javier Esparza Beyond Big-Oh analysis

Couvreur and Gabow’s algorithm [C99,G00]

Partition Stack into Roots and Nonroots, keeping the following
iInvariant:

@ Roots contains all nodes that are roots
of the part of the graph explored so far .

@ Nonroots: contains all nodes that are non-roots
of the part of the graph explored so far .

@ Key insight: g is a root iff it is a root of the part of the graph
explored at time ret(q).

@ So we can check if g is a root by checking g = top(Roots)
at time ret(q).

Javier Esparza Beyond Big-Oh analysis

Couvreur and Gabow’s algorithm [C99,G00]

Partition Stack into Roots and Nonroots, keeping the following
iInvariant:

@ Roots contains all nodes that are roots
of the part of the graph explored so far .

@ Nonroots: contains all nodes that are non-roots
of the part of the graph explored so far .

@ Key insight: g is a root iff it is a root of the part of the graph
explored at time ret(q).

@ So we can check if g is a root by checking g = top(Roots)
at time ret(q).

@ New problem: to keep the invariant.

Javier Esparza Beyond Big-Oh analysis

Couvreur, Gabow, and GOD'’s algorithm

GOD'’s contribution: oracle to keep the invariant
@ For g — r, the oracle decides if g reachable from r: r ~~ q.

Javier Esparza Beyond Big-Oh analysis

Couvreur, Gabow, and GOD'’s algorithm

GOD'’s contribution: oracle to keep the invariant
@ For g — r, the oracle decides if g reachable from r: r ~~ q.

Javier Esparza Beyond Big-Oh analysis

Couvreur, Gabow, and GOD'’s algorithm

GOD'’s contribution: oracle to keep the invariant
@ For g — r, the oracle decides if g reachable from r: r ~~ q.
@ Observe: if r ~» g then r belongs to a cycle.

Javier Esparza Beyond Big-Oh analysis

Couvreur, Gabow, and GOD'’s algorithm

GOD'’s contribution: oracle to keep the invariant
@ For g — r, the oracle decides if g reachable from r: r ~~ q.
@ Observe: if r ~» g then r belongs to a cycle.

@ We show: no node in Roots discovered after r can be a
root.

Javier Esparza Beyond Big-Oh analysis

1 GCG(q)

2 push(q, Roots);

3 for each transition g — r

4 if r not yet explored then GCG(r)

5 elseif r ~ g then

6 repeat

7 s :=pop(Roots); push(Nonroots);
8 If sis accepting report “nonempty”
9 until ca(s) < ca(r);

10 push(s, Roots); pop(Nonroots)

11 if top(Roots) = g then

12 pop(Roots);

13 while ca(top(Nonroots)) > ca(q)

14 pop(Nonroots)

Javier Esparza Beyond Big-Oh analysis

Time | Stack content
[1,14] 2,13] S | q493G2Q1Qo

6 | g1Q

8 | 350190

9 | 01Qo

10 | G601 Qo

12 | 1o

14 €

[5,6] [4,7]

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

@ Situation: g — r ~ q, s € Roots, ca(s) > ca(r).

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

@ Situation: g — r ~ q, s € Roots, ca(s) > ca(r).
@ We show p, ~» S ~» q — r ~ pr.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

@ Situation: g — r ~ q, s € Roots, ca(s) > ca(r).
@ We show p, ~~» S~ q — r ~ py.
@ sis a DFS-ascendant of g, and so s ~ q.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

@ Situation: g — r ~ q, s € Roots, ca(s) > ca(r).
@ We show p, ~» S ~» q — r ~ pr.

@ sis a DFS-ascendant of g, and so s ~ q.
Because s € Roots, and Roots subset of DFS-stack.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

@ Situation: g — r ~ q, s € Roots, ca(s) > ca(r).
@ We show p, ~» S ~» q — r ~ pr.

@ sis a DFS-ascendant of g, and so s ~ q.
Because s € Roots, and Roots subset of DFS-stack.

@ p,is a DFS-ascendant of s, and so p, ~ s.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

@ Situation: g — r ~ q, s € Roots, ca(s) > ca(r).
@ We show p, ~» S ~» q — r ~ pr.

@ sis a DFS-ascendant of g, and so s ~ q.
Because s € Roots, and Roots subset of DFS-stack.

@ p,is a DFS-ascendant of s, and so p, ~ s.
Since g — r ~» q, we have p, = pg, and so p, is a
DFS-ascendant of g.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

@ Situation: g — r ~ q, s € Roots, ca(s) > ca(r).
@ We show p, ~» S ~» q — r ~ pr.

@ sis a DFS-ascendant of g, and so s ~ q.
Because s € Roots, and Roots subset of DFS-stack.

@ p,is a DFS-ascendant of s, and so p, ~ s.
Since g — r ~» q, we have p, = pg, and so p, is a
DFS-ascendant of g.
So either p, is DFS-ascendant of s or vice versa.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

If sis popped at line 7, then it belongs to a cycle containing r. \

@ Situation: g — r ~ q, s € Roots, ca(s) > ca(r).
@ We show p, ~» S ~» q — r ~ pr.

@ sis a DFS-ascendant of g, and so s ~ q.
Because s € Roots, and Roots subset of DFS-stack.

@ p,is a DFS-ascendant of s, and so p, ~ s.
Since g — r ~» q, we have p, = pg, and so p, is a
DFS-ascendant of g.
So either p, is DFS-ascendant of s or vice versa.
But s cannot be a DFS-ascendant of p, because
ca(pr) < ca(r) < ca(s).

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

Correctness |l

If a state s is popped at line 7 and ca(s) > ca(r), then it is not a
root.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

Correctness |l

If a state s is popped at line 7 and ca(s) > ca(r), then it is not a
root.

@ s belongs to a cycle containing r, and, since ca(s) > ca(r),
it is not a root.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality
Correctness lll + Optimality

Every reachable state g belonging to some cycle is eventually
popped at line 7.

Moreover, g is popped immediately after any cycle containing it
IS completely explored.

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

Correctness lll + Optimality

Every reachable state g belonging to some cycle is eventually
popped at line 7.

Moreover, g is popped immediately after any cycle containing it
IS completely explored.

@ Fix a cycle C containing q.

\

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

Correctness lll + Optimality

Every reachable state g belonging to some cycle is eventually
popped at line 7.

Moreover, g is popped immediately after any cycle containing it
IS completely explored.

@ Fix a cycle C containing q.

@ Let r be the last successor of g along C such that at time
ca(q) there is a path of unexplored states from g to r
(count g as unexplored, possibly g = r).

\

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

Correctness lll + Optimality

Every reachable state g belonging to some cycle is eventually
popped at line 7.

Moreover, g is popped immediately after any cycle containing it
IS completely explored.

@ Fix a cycle C containing q.

@ Let r be the last successor of g along C such that at time
ca(q) there is a path of unexplored states from g to r
(count g as unexplored, possibly g = r).

@ Let s be the successor of r along C.

\

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality
Correctness lll + Optimality

Every reachable state g belonging to some cycle is eventually
popped at line 7.

Moreover, g is popped immediately after any cycle containing it
IS completely explored.

@ Fix a cycle C containing q.

@ Let r be the last successor of g along C such that at time
ca(q) there is a path of unexplored states from g to r
(count g as unexplored, possibly g = r).

@ Let s be the successor of r along C.
@ ca(s) < ca(q) < ca(r), and so ca(s) < ca(r).

\

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality
Correctness lll + Optimality

Every reachable state g belonging to some cycle is eventually
popped at line 7.

Moreover, g is popped immediately after any cycle containing it
IS completely explored.

@ Fix a cycle C containing q.

@ Let r be the last successor of g along C such that at time
ca(q) there is a path of unexplored states from g to r
(count g as unexplored, possibly g = r).

@ Let s be the successor of r along C.
@ ca(s) < ca(q) < ca(r), and so ca(s) < ca(r).
@ So g is popped at line 7 when g — r is explored, or earlier.

y

Javier Esparza Beyond Big-Oh analysis

Correctness and optimality

Correctness llI

Every state discovered by the search and not belonging to any
cycle is eventually popped at line 12.

Easy. \

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

@ Situation: ca(q) <t < ret(q),q — r,ca(r) <t

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

@ Situation: ca(q) <t < ret(q),q — r,ca(r) <t

@ Assume r ~ q. If t > ret(p;), then t > ret(q),
contradiction. So t < ret(pr)

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

@ Situation: ca(q) <t < ret(q),q — r,ca(r) <t

@ Assume r ~ q. If t > ret(p;), then t > ret(q),
contradiction. So t < ret(pr)

@ Assume r v+ q. Then g ~ pr 4 q.

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

@ Situation: ca(q) <t < ret(q),q — r,ca(r) <t

@ Assume r ~ q. If t > ret(p;), then t > ret(q),
contradiction. So t < ret(pr)

@ Assume r v+ q. Then g ~ pr 4 q.
By postorder lemma, ret(p,) < ret(q).

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

@ Situation: ca(q) <t < ret(q),q — r,ca(r) <'t.
@ Assume r ~ q. If t > ret(p;), then t > ret(q),
contradiction. So t < ret(pr)

@ Assume r v+ q. Then g ~ pr 4 q.
By postorder lemma, ret(p,) < ret(q).
Case 1: ca(pr) < ret(pr) < ca(q) < t < ret(q). Done.

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

@ Situation: ca(q) <t < ret(q),q — r,ca(r) <t

@ Assume r ~ q. If t > ret(p;), then t > ret(q),
contradiction. So t < ret(pr)

@ Assume r v+ q. Then g ~ pr 4 q.
By postorder lemma, ret(p,) < ret(q).
Case 1: ca(pr) < ret(pr) < ca(q) < t < ret(q). Done.
Case 2: ca(q) < ca(pr) < ca(r) < ret(pr) < ret(q).
Since at time t we are executing dfs(q), we have
ret(pr) <t < ret(q).

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

@ Recall ca(r) <t

@ Attime ret(p) removes all nodes from p’s SCC from Rots
and Nonroots.

@ So r stays in Stack exactly during the interval
[ca(r), ret(root(t))], and therefore:

Javier Esparza Beyond Big-Oh analysis

Implementing the oracle

Asume the oracle is asked at time t whether r ~~ q.
The answer is “yes” iff t < ret(py).

@ Recall ca(r) <t

@ Attime ret(p) removes all nodes from p’s SCC from Rots
and Nonroots.

@ So r stays in Stack exactly during the interval
[ca(r), ret(root(t))], and therefore:
t < ret(py) iff r € Roots U Nonroots at time t.

Javier Esparza Beyond Big-Oh analysis

Couvrer and Gabow’s algorithm [C99,G00]

ONO Ol AW =

GCG(q)
push(q, Roots);
for each transition g — r
if r not yet explored then GCG(r)
elseif r € Roots U Nonroots then
repeat
s :=pop(Roots); push(Nonroots);
If sis accepting report “nonempty”
until ca(s) < ca(r);
push(s, Roots); pop(Nonroots)
if top(Roots) = q then
pop(Roots);
while ca(top(Nonroots)) > ca(q)
pop(Nonroots)

Javier Esparza Beyond Big-Oh analysis

Extension to generalized Blchi automata

Store for each state g € Roots a subset g.acc of accepting
sets, maintaining the following invariant:

@ g.acc contains all the accepting sets intersecting g's SCC
in the part of the graph explored so far.

Javier Esparza Beyond Big-Oh analysis

Extension to generalized Blchi automata

Store for each state g € Roots a subset g.acc of accepting
sets, maintaining the following invariant:

@ g.acc contains all the accepting sets intersecting g's SCC
in the part of the graph explored so far.

When GC(q) pops a cycle, add all the acc’s of the popped
states to g.acc.

Javier Esparza Beyond Big-Oh analysis

1 EGC(q)

2 push(q, Roots);

3 g.acc := accepting sets containing q;

4 for each transition g — r

5 if r not yet explored then EGC(r)

6 elseif r € Roots U Nonroots then

/ repeat

8 s :=pop(Roots); push(s, Nonroots);
9 g.acc := g.acc U s.acc

10 until ca(s) < ca(r);

11 push(s, Roots); pop(Nonroots);

12 If g.acc = all accepting sets report “honempty”
13 if g = top(Roots) then

14 pop(Roots);

15 while ca(top(Nonroots)) > ca(q)

16 pop(Nonroots)

Javier Esparza Beyond Big-Oh analysis

Couvreur’s observation [C99]

The SCC of a root can also be determined as follows:
@ Introduce one extra bit by for evey state qg. Initially by = 0.

@ For every root p: at time ret(p) conduct a DFS to set to 1
the bits of all states reachable from p.

@ The set of states that had to be flipped constitute p's SCC.

Javier Esparza Beyond Big-Oh analysis

Couvreur’s observation [C99]

The SCC of a root can also be determined as follows:
@ Introduce one extra bit by for evey state qg. Initially by = 0.

@ For every root p: at time ret(p) conduct a DFS to set to 1
the bits of all states reachable from p.

@ The set of states that had to be flipped constitute p's SCC.
Gets rid of Nonroots, but requires one extra DFS.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Cerna and Pelanek’s observation [CP03]

@ Many LTL specifications are translated into weak Buichi
automata.

@ The four-colour algorithm without the second search is
correct for weak automata.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Cerna and Pelanek’s observation [CP03]

@ Many LTL specifications are translated into weak Buichi
automata.

@ The four-colour algorithm without the second search is
correct for weak automata.

Schwoon and E. [SE05]

The four-colour algorithm without the second searches is
optimal for weak automata.

Javier Esparza Beyond Big-Oh analysis

End of the story?

Nested-DFS | SCC-based

Time 2 post ops 1/2 post op

Space 2 bits 2/1 numbers
Optimal Only for WBA Yes
Ext. to GBA No Yes

Javier Esparza Beyond Big-Oh analysis

End of the story?

Nested-DFS | SCC-based

Time 2 post ops 1/2 post op

Space 2 bits 2/1 numbers
Optimal Only for WBA Yes
Ext. to GBA No Yes

Practical relevance of differences in space complexity

@ Small when state descriptors explicitely stored.
(state descriptors are often dozens of bytes long)

@ Large when state-hashing is applied.
(one or two bits for storing a state)

Javier Esparza Beyond Big-Oh analysis

Open questions

@ Are there optimal algorithms requiring only a constant
number of additional bits per state?

Javier Esparza Beyond Big-Oh analysis

Open questions

@ Are there optimal algorithms requiring only a constant
number of additional bits per state?

@ Are there algorithms for GBA requiring only a constant
number of additional bits per state?

Javier Esparza Beyond Big-Oh analysis

Open questions

@ Are there optimal algorithms requiring only a constant
number of additional bits per state?

@ Are there algorithms for GBA requiring only a constant
number of additional bits per state?

@ Can a shortest counterexample be computed in linear
time?

Javier Esparza Beyond Big-Oh analysis

Universal search)

Javier Esparza Beyond Big-Oh analysis

@ Introduced by Levin.

Javier Esparza Beyond Big-Oh analysis

@ Introduced by Levin.

@ Used here as a theoretical justification of the need for
going beyond Big-Oh analysis.

Javier Esparza Beyond Big-Oh analysis

@ Introduced by Levin.

@ Used here as a theoretical justification of the need for
going beyond Big-Oh analysis.

o

Intuitively ...

Javier Esparza Beyond Big-Oh analysis

@ Introduced by Levin.

@ Used here as a theoretical justification of the need for
going beyond Big-Oh analysis.

o

Intuitively ...

@ Let A[x] be an algorithm computing F(x) in f(n) time.
A is optimal for F if no other algorithm computes F in
o(f(n)) time.

Javier Esparza Beyond Big-Oh analysis

@ Introduced by Levin.

@ Used here as a theoretical justification of the need for
going beyond Big-Oh analysis.

o

Intuitively ...

@ Let A[x] be an algorithm computing F(x) in f(n) time.
A is optimal for F if no other algorithm computes F in
o(f(n)) time.

@ We give a universal algorithm that is optimal for every F.

Javier Esparza Beyond Big-Oh analysis

@ Introduced by Levin.

@ Used here as a theoretical justification of the need for
going beyond Big-Oh analysis.

o

Intuitively ...

@ Let A[x] be an algorithm computing F(x) in f(n) time.
A is optimal for F if no other algorithm computes F in
o(f(n)) time.
@ We give a universal algorithm that is optimal for every F.
@ Corollary: if constants don’t matter we are all useless!

Javier Esparza Beyond Big-Oh analysis

A bit more formally ...

@ Fix a formal system (i.e., ZF).

@ A function is provably computable if some algorithm
computes it and the algorithm’s correctness is a theorem of
the system.

y

Javier Esparza Beyond Big-Oh analysis

A bit more formally ...

@ Fix a formal system (i.e., ZF).

@ A function is provably computable if some algorithm
computes it and the algorithm’s correctness is a theorem of
the system.

y

Theorem (Levin)

There is an algorithm U[F, x| such that U[F, —] is optimal
for every provably computable function F.

Javier Esparza Beyond Big-Oh analysis

A non-optimal algorithm Ui [F, —]

We describe first an obviously correct algorithm U; [F, —].
On input x, U;[F, —] behaves as follows:

@ U;|[F,—]| enumerates all pairs 1 = (P, D), where P
program and D derivation of the formal system.
Let 14,5, 5. .. be this enumeration.

@ Forevery N, = (P;, D;): Ui[F, —| checks if D; is a proof that
P; computes F. If so, U;[F, —] computes P;[x] and stops.

Javier Esparza Beyond Big-Oh analysis

A non-optimal algorithm Ui [F, —]

We describe first an obviously correct algorithm U; [F, —].
On input x, U;[F, —] behaves as follows:

@ Ui[F,—] enumerates all pairs 1 = (P, D), where P
program and D derivation of the formal system.
Let 14,5, 5. .. be this enumeration.

@ Forevery N, = (P;, D;): Ui[F, —| checks if D; is a proof that
P; computes F. If so, U;[F, —] computes P;[x] and stops.

The algorithm U[F, —]

U|F, x] dovetails the computations of U;[F, —]. It spends:
@ every second step on 4]
@ every second step of the remaining ones on [l5;
@ every second step of the remaining ones on I3, etc.

Javier Esparza Beyond Big-Oh analysis

If P runs in f(n) time, then U[F, —] runs in O(f(n)) time.

Javier Esparza Beyond Big-Oh analysis

If P runs in f(n) time, then U[F, —] runs in O(f(n)) time.

Let / be the smallest index such that P; = P and D, proves that
P computes F. (Observe: i independent of x!)

Javier Esparza Beyond Big-Oh analysis

If P runs in f(n) time, then U[F, —] runs in O(f(n)) time.

Let / be the smallest index such that P; = P and D, proves that
P computes F. (Observe: i independent of x!)

Then U[F, —] terminates on input x after executing f(x) steps
of I1;, or earlier.

Javier Esparza Beyond Big-Oh analysis

If P runs in f(n) time, then U[F, —] runs in O(f(n)) time.

Let / be the smallest index such that P; = P and D, proves that
P computes F. (Observe: i independent of x!)
Then U[F, —] terminates on input x after executing f(x) steps

of I1;, or earlier.
Total number of steps executed by U[F, —] on x:

So U[F, —] takes at most 2/ . f(x) = O(f(x)) steps.

Javier Esparza Beyond Big-Oh analysis

If P runs in f(n) time, then U[F, —] runs in O(f(n)) time.

Let / be the smallest index such that P; = P and D, proves that
P computes F. (Observe: i independent of x!)
Then U[F, —] terminates on input x after executing f(x) steps
of I1;, or earlier.
Total number of steps executed by U[F, —] on x:
@ Steps spenton I, M;_4,..., :
f(x) + 2f(x) + 22f(x) + ...+ 2'f(x) = (2" — 1)f(x)

So U[F, —] takes at most 2/ . f(x) = O(f(x)) steps.

Javier Esparza Beyond Big-Oh analysis

If P runs in f(n) time, then U[F, —] runs in O(f(n)) time.

Let / be the smallest index such that P; = P and D, proves that

P computes F. (Observe: i independent of x!)
Then U[F, —] terminates on input x after executing f(x) steps

of I1;, or earlier.
Total number of steps executed by U[F, —] on x:

@ Steps spenton [1;,1;_q,...,M: |
F(X) 4+ 2f(x) + 22f(X) + ... + 2/f(x) = (21 — 1)f(x)
@ Steps spenton I q,Mjo,...:
SO0 + Ff0) + ... +1 < f(x) = f(x)
So U[F, —] takes at most 2/ . f(x) = O(f(x)) steps.

Javier Esparza Beyond Big-Oh analysis

Conclusions

Javier Esparza Beyond Big-Oh analysis

Conclusions

@ Going beyond Big-Oh analysis in verification is important.

Javier Esparza Beyond Big-Oh analysis

Conclusions

@ Going beyond Big-Oh analysis in verification is important.

@ It is not only about heuristics and hacking: good theory is
waiting for us there.

Javier Esparza Beyond Big-Oh analysis

