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A bit of satire . . .

Theoretical computer scientists as classifiers.
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Definition
A theoretical computer scientist (TCS) is a (possibly
non-terminating) algorithm that gets a problem P as input
and outputs a lower bound Ω(LB) and an upper bound
O(UB).

A TCS is sober if LB ≤ UB, otherwise is drunk.
A TCS is good iff it writes papers that deserve publishing.
A paper deserves publishing iff it provides new or better
bounds.
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The classifier’s world view

Once matching upper and lower bounds up to a
multiplicative constant have been found, going beyond is
tedious and uninteresting.
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A few alternative thesis

Theoretical computer scientists should provide efficient
algorithms for problems, not just classify them.
Classifications usually help, are but a first step.
An efficient algorithm is not the same as an algorithm with
O(f (n)) runtime for a slowly growing f :

- constants may matter,
- runtime is not the only important parameter.

Implementations very much help to reveal the problems of
seemingly efficient algorithms. They lead to better theory.
Automata theory for verification very much profits from
“beyond Big-Oh” analysis and prototype implementations.
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Today’s menu

Appetizer: Universality of finite automata
Main course: Emptiness of Büchi automata
Dessert: Universal search
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Universality of finite automata
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The problem
Given: a NFA A over alphabet Σ.
Decide: is L(A) = Σ∗ ?
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Deterministic algorithm:

Determinize → complement → check for emptiness.
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The problem
Given: a NFA A over alphabet Σ.
Decide: is L(A) = Σ∗ ?

Theorem:
Universality is PSPACE-complete.

Deterministic algorithm:

Determinize → complement → check for emptiness.

Complexity:

O(2|A|) time and space, and Θ(2|A|) for some family.
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End of the story? No!
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Subsumption check [DeWDHR06]:
If the powerset construction generates states Q1 ⊆ Q2,
redirect Q2’s incoming arcs to Q1 and remove Q2.
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End of the story? No!

Subsumption check [DeWDHR06]:
If the powerset construction generates states Q1 ⊆ Q2,
redirect Q2’s incoming arcs to Q1 and remove Q2.

Correctness

Let B = Pow(A) (only reachable states).
Recall: LB(Q) =

⋃
q∈Q LA(q) for every state Q of B.

Recall: A universal iff LB(Q) = Σ∗ for every state Q of B.
Assume Q1 ⊆ Q2. We have LB(Q1) ⊆ LB(Q2) and if B
universal then LB(Q1) = LB(Q2).
Let B′ be the result of the operation. Then LB′ ⊆ LB and if
B universal then LB′ = LB.
So B′ universal iff B universal iff A universal.
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Potential application to verification

Typical scenario
System: communicating automata A1, A2, . . . , An.
Specification (allowed behaviour): automaton B.
System’s behaviour: automaton A = A1 ⊗ A2 ⊗ . . .⊗ An.
System correct if L(A) ⊆ L(B)
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Potential application to verification

Typical scenario
System: communicating automata A1, A2, . . . , An.
Specification (allowed behaviour): automaton B.
System’s behaviour: automaton A = A1 ⊗ A2 ⊗ . . .⊗ An.
System correct if L(A) ⊆ L(B)

Usual approach: L(A) ⊆ L(B) iff L(A) ∩ L(B)) = ∅
Compute A = A1 ⊗ . . .⊗ An. Possible blowup!
Check emptiness of A× B.

Alternative approach: L(A) ⊆ L(B) iff L(A) ∪ L(B) = Σ∗

Compute A = A1 ⊕ . . .⊕ An.
Check universality of A + B. Possible blowup!
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Emptiness of Büchi automata
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The problem
Given: a Büchi automaton A.
Decide: is L(A) = ∅ ?

Lassos
A is nonempty iff it contains an accepting lasso: a path leading
from some initial state to some accepting state, followed by a
cycle.
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A trivial quadratic algorithm

The algorithm

(1) Compute all reachable final states.
(2) For every final state q:

- check if q is reachable from itself.
- if so, stop and answer “nonempty”.
Answer “empty”.
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(1) takes O(|A|) time.

(2) takes O(|A|2) time, and there is a family of graphs for
which it takes Θ(|A|2).
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A first linear algorithm: double-DFS [CVWY91]

(1) Use DFS to compute a list α1, α2, . . . , αk of all reachable
accepting states

sorted in postorder.
(a state is added to list when backtracking from it)

(2) For i = 1 to k :
- use

a modified

DFS to check if αi is reachable from itself

without visiting any state reachable from α1, . . . , αi−1.

- if so, stop and answer “nonempty”.
Answer “empty”.
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(1) Use DFS to compute a list α1, α2, . . . , αk of all reachable
accepting states sorted in postorder.
(a state is added to list when backtracking from it)
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q0 q1 q2 q3 q4

q5
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Complexity

Time complexity

Phase (1) takes O(|A|) time.

Phase (2) takes O(|A|) time.
In the DFS for αi we backtrack whenever hitting states
visited during the former DFSs, and so every transition is
explored at most once.
Together: 2 post ops per (reachable) state.
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Space complexity

For each state we have three possible situations:
- not yet discovered by the first phase;
- discovered by the first, but not yet by the second;
- discovered by both phases.
2 additional bits per (reachable) state.
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Correctness

Correctness I
If the algorithm answers “nonempty”, then A is nonempty. Easy.
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Correctness

Correctness I
If the algorithm answers “nonempty”, then A is nonempty. Easy.

Correctness II
If A is nonempty, then the algorithm answers “nonempty”.

Proof:
Consider the case k = 2 (two final states α1, α2).

If some cycle contains α1, the algorithm will detect it.
If some cycle contains α2, and no transition of the cycle is
reachable from α1, the algorithm will detect it.
Potential problem: some cycle contains α2, some transition
of the cycle is reachable from α1.
Call these cycles blocked.
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Solution: guarantee that if there are blocked cycles, then
some cycle contains α1.
Because cycles containing α1 are always detected!

Javier Esparza Beyond Big-Oh analysis
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some cycle contains α1.
Because cycles containing α1 are always detected!

If there is a blocked cycle, then α1  α2.
If (α1  α2 ∧ α2  α1) then some cycle contains α1.
So it suffices to guarantee: if α1  α2 then α2  α1.
We show that postorder implies this.
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Look at DFS as a recursive procedure dfs(q).
Let ca(q) denote the time at which dfs(q) is called.
Let ret(q) denote the time at which dfs(q) returns.
(The search backtracks from q.)

Postorder assumption: ret(α1) < ret(α2).
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Lemma
Assume ret(α1) < ret(α2). If α1  α2 then α2  α1.
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Lemma
Assume ret(α1) < ret(α2). If α1  α2 then α2  α1.

Proof:
By proper nesting of calls we have either:
- ca(α1) < ret(α1) < ca(α2) < ret(α2) or
- ca(α2) < ca(α1) < ret(α1) < ret(α2)

Case 1: ca(α1) < ret(α1) < ca(α2) < ret(α2).
Then α1 6 α2.
Case 2: ca(α2) < ca(α1) < ret(α1) < ret(α2).
Then α2  α1.
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End of the story? No!
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End of the story? No!

Double-DFS requires to explore every transition at least
once.
(Cannot terminate before the end of the first search!)

Double-DFS inadequate for producing counterexamples:

Counterexample: path to accepting state αi + cycle.
Double-DFS requires to store paths for all accepting states.
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Solution: nested-DFS [CVWY91]

Interleave the two phases.

At time ret(αi) interrupt the first search and launch the
second search for αi .
When the algorithm finds a cycle the call stack contains
- a path to the current final state αi , plus
- a path leading from αi to itself.
Counterexample: just pop the call stack!
Correctness: Easy. The second searches are exactly as in
the double-DFS algorithm.
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End of the story? No!

Definition
A search algorithm for Büchi emptiness is optimal if it
terminates immediately after the set of transitions it has
explored contains an accepting lasso.
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End of the story? No!

Definition
A search algorithm for Büchi emptiness is optimal if it
terminates immediately after the set of transitions it has
explored contains an accepting lasso.

The nested-DFS algorithm is not optimal!
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Minor improvements

[Holzmann, Peled, Yannakakis 96]
If the second search finds a state that is currently in the call
stack of the first search, answer “nonempty”.
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If the second search finds a state that is currently in the call
stack of the first search, answer “nonempty”.

[Gastin, Moro, Zeitoun 04]
If the first search finds an accepting state that is currently in the
call stack, answer “nonempty”.
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Minor improvements

[Holzmann, Peled, Yannakakis 96]
If the second search finds a state that is currently in the call
stack of the first search, answer “nonempty”.

[Gastin, Moro, Zeitoun 04]
If the first search finds an accepting state that is currently in the
call stack, answer “nonempty”.

[Schwoon, E. 05]
These two improvements still require only 2 additional bits per
state: four-colour algorithm.
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But: the four-colour algorithm is still not optimal.
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But: the four-colour algorithm is still not optimal.

Question
Are there optimal (linear-time) algorithms?
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SCC-based algorithms

Approach
Identify the reachable (nontrivial) SCCs of A.
Check if some of them contains an accepting state.
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Tarjan’s algorithm for computing SCCs

Basic notions
Automaton A ⇒ dag of SCCs.

Root of a SCC: the first node of the SCC discovered by the
DFS.
(The definition of root refers to a particular, fixed DFS-run!)
If ρ is a root, then at time ret(ρ) the DFS has discovered all
nodes of ρ’s SCC and its descendants in the dag.
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Tarjan’s algorithm for computing SCCs

Basic notions
Automaton A ⇒ dag of SCCs.
Root of a SCC: the first node of the SCC discovered by the
DFS.
(The definition of root refers to a particular, fixed DFS-run!)
If ρ is a root, then at time ret(ρ) the DFS has discovered all
nodes of ρ’s SCC and its descendants in the dag.

First idea
Push all discovered nodes in a new stack (Tarjan’s stack).
For every root ρ: at time ret(ρ), pop from Tarjan’s stack
until ρ is popped; the popped nodes constitute ρ’s SCC.
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Tarjan and GOD’s algorithm

GOD’s contribution: Oracle
For a given state q oracle decides if q is a root.

1 T(q)
2 push(q, Stack);
3 for each transition q → r
4 if r not yet explored then T(r )
5 if q is a root then
6 repeat s := pop(Stack) until s = q
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Implementing the oracle

Problem
The algorithm must identify the roots of the SCCs.
But the SCCs are what we want to compute!
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Implementing the oracle

Problem
The algorithm must identify the roots of the SCCs.
But the SCCs are what we want to compute!

Second idea
Annotate each state q with ca(q) and a lowlink-number
lowlink(q).
(Order induced by call numbers is all that matters)

lowlink(q): lowest ca(r) of states r satisfying
- q and r lie in the same SCC, and
- r reachable from q through states not yet discovered
at time ca(q).

lowlink(q) ≤ ca(q) for every state q.
Fact: lowlink(q) = ca(q) if and only if q is a root.
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Tarjan’s algorithm

Miracle
lowlink(q) can be easily determined at time ret(q).
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Tarjan’s algorithm

Miracle
lowlink(q) can be easily determined at time ret(q).

1 T(q)
2 push(q, Stack);
3 for each transition q → r
4 if r not yet explored then
5 T(r );
6 r .lowlink := min(q.lowlink , r .lowlink)
7 else if r ∈ Stack then
8 r .lowlink := min(q.lowlink , r .ca)
9 if q.lowlink = q.ca then
10 repeat s := pop(Stack) until s = q
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Geldenhuys and Valmari’s algorithm [GV04]

A direct modification of Tarjan’s algorithm for emptiness
checking is non-optimal.

Requires to completely explore an SCC before it is popped
from the stack.
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Geldenhuys and Valmari’s algorithm [GV04]

A direct modification of Tarjan’s algorithm for emptiness
checking is non-optimal.
Requires to completely explore an SCC before it is popped
from the stack.

Main observation of [GV04]:
α belongs to a cycle iff T (α) reaches some state r satisfying
two conditions:

r ∈ Stack , and
lowlink(r) < ca(α).
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Geldenhuys and Valmari’s algorithm [GV04]

Add a new parameter to the procedure to keep track of the last
visited accepting state.

1 GV(q, α)
2 push(q, Stack);
3 for each transition q → r
4 if r not yet explored then
5 if r accepting then GV(r , r ) else GV(r , α);
6 r .lowlink := min(q.lowlink , r .lowlink)
7 else if r ∈ Stack then
8 if r .lowlink < α.ca then report “nonempty”;
9 r .lowlink := min(q.lowlink , r .ca)
10 if q.lowlink = q.ca then
13 repeat s := pop(Stack) until s = q
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End of the story? No!
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End of the story? No!

Time complexity
[GV04] requires only one post op per state.
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End of the story? No!

Time complexity
[GV04] requires only one post op per state.

Space complexity
[GV04] requires to store two numbers per state plus a third
number for Tarjan’s stack (3 · log n bits per state).

Compare with 2 bits per state of nested-DFS or the
four-colour algorithm.
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Compare with 2 bits per state of nested-DFS or the
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Generalized Büchi automata
LTL → Büchi translations yield generalized BA.

GBA with n states and k acceptings sets → BA with n · k
states. Expensive!
Neither nested-DFS nor GV can be extended to GBA.
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Question

Do optimal algorithms exist that

require less memory, and
can be easily extended to GBAs?
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Couvreur and Gabow’s algorithm [C99,G00]

First idea
Partition Stack into Roots and Nonroots, keeping the following
invariant:

Roots contains all nodes that are roots
of the part of the graph explored so far .
Nonroots: contains all nodes that are non-roots
of the part of the graph explored so far .
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Partition Stack into Roots and Nonroots, keeping the following
invariant:

Roots contains all nodes that are roots
of the part of the graph explored so far .
Nonroots: contains all nodes that are non-roots
of the part of the graph explored so far .

Key insight: q is a root iff it is a root of the part of the graph
explored at time ret(q).

So we can check if q is a root by checking q = top(Roots)
at time ret(q).
New problem: to keep the invariant.

Javier Esparza Beyond Big-Oh analysis



Couvreur and Gabow’s algorithm [C99,G00]

First idea
Partition Stack into Roots and Nonroots, keeping the following
invariant:

Roots contains all nodes that are roots
of the part of the graph explored so far .
Nonroots: contains all nodes that are non-roots
of the part of the graph explored so far .

Key insight: q is a root iff it is a root of the part of the graph
explored at time ret(q).
So we can check if q is a root by checking q = top(Roots)
at time ret(q).

New problem: to keep the invariant.

Javier Esparza Beyond Big-Oh analysis



Couvreur and Gabow’s algorithm [C99,G00]

First idea
Partition Stack into Roots and Nonroots, keeping the following
invariant:

Roots contains all nodes that are roots
of the part of the graph explored so far .
Nonroots: contains all nodes that are non-roots
of the part of the graph explored so far .

Key insight: q is a root iff it is a root of the part of the graph
explored at time ret(q).
So we can check if q is a root by checking q = top(Roots)
at time ret(q).
New problem: to keep the invariant.

Javier Esparza Beyond Big-Oh analysis



Couvreur, Gabow, and GOD’s algorithm

GOD’s contribution: oracle to keep the invariant
For q → r , the oracle decides if q reachable from r : r  q.

Observe: if r  q then r belongs to a cycle.
We show: no node in Roots discovered after r can be a
root.
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1 GCG(q)
2 push(q, Roots);
3 for each transition q → r
4 if r not yet explored then GCG(r )
5 elseif r  q then
6 repeat
7 s :=pop(Roots); push(Nonroots);
8 if s is accepting report “nonempty”
9 until ca(s) ≤ ca(r);
10 push(s, Roots); pop(Nonroots)
11 if top(Roots) = q then
12 pop(Roots);
13 while ca(top(Nonroots)) > ca(q)
14 pop(Nonroots)

Javier Esparza Beyond Big-Oh analysis



Example

q0 q1 q2

q3q4

q5

q6

[1,14] [2,13]

[3,12]

[4,7][5,6]

[8,9]

[10,11]

Time Stack content
5 q4q3q2q1q0
6 q1q0
8 q5q1q0
9 q1q0
10 q6q1q0
12 q1q0
14 ε

Javier Esparza Beyond Big-Oh analysis



Correctness and optimality

Correctness I
If s is popped at line 7, then it belongs to a cycle containing r .
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Correctness and optimality

Correctness I
If s is popped at line 7, then it belongs to a cycle containing r .

Proof:
Situation: q → r  q, s ∈ Roots, ca(s) > ca(r).

We show ρr  s  q → r  ρr .
s is a DFS-ascendant of q, and so s  q.

Because s ∈ Roots, and Roots subset of DFS-stack.

ρr is a DFS-ascendant of s, and so ρr  s.

Since q → r  q, we have ρr = ρq, and so ρr is a
DFS-ascendant of q.
So either ρr is DFS-ascendant of s or vice versa.
But s cannot be a DFS-ascendant of ρr because
ca(ρr ) ≤ ca(r) < ca(s).
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Correctness and optimality

Correctness II
If a state s is popped at line 7 and ca(s) > ca(r), then it is not a
root.
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Correctness and optimality

Correctness II
If a state s is popped at line 7 and ca(s) > ca(r), then it is not a
root.

Proof:
s belongs to a cycle containing r , and, since ca(s) > ca(r),
it is not a root.
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Correctness and optimality

Correctness III + Optimality
Every reachable state q belonging to some cycle is eventually
popped at line 7.
Moreover, q is popped immediately after any cycle containing it
is completely explored.
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Correctness III + Optimality
Every reachable state q belonging to some cycle is eventually
popped at line 7.
Moreover, q is popped immediately after any cycle containing it
is completely explored.

Proof:
Fix a cycle C containing q.

Let r be the last successor of q along C such that at time
ca(q) there is a path of unexplored states from q to r
(count q as unexplored, possibly q = r ).
Let s be the successor of r along C.
ca(s) ≤ ca(q) ≤ ca(r), and so ca(s) ≤ ca(r).
So q is popped at line 7 when q → r is explored, or earlier.
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Correctness III + Optimality
Every reachable state q belonging to some cycle is eventually
popped at line 7.
Moreover, q is popped immediately after any cycle containing it
is completely explored.

Proof:
Fix a cycle C containing q.
Let r be the last successor of q along C such that at time
ca(q) there is a path of unexplored states from q to r
(count q as unexplored, possibly q = r ).
Let s be the successor of r along C.
ca(s) ≤ ca(q) ≤ ca(r), and so ca(s) ≤ ca(r).
So q is popped at line 7 when q → r is explored, or earlier.
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Correctness and optimality

Correctness III
Every state discovered by the search and not belonging to any
cycle is eventually popped at line 12.

Proof:
Easy.
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Implementing the oracle

Lemma
Asume the oracle is asked at time t whether r  q.
The answer is “yes” iff t < ret(ρr ).
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Implementing the oracle

Lemma
Asume the oracle is asked at time t whether r  q.
The answer is “yes” iff t < ret(ρr ).

Proof:
Situation: ca(q) ≤ t < ret(q), q → r , ca(r) ≤ t .

Assume r  q. If t ≥ ret(ρr ), then t ≥ ret(q),
contradiction. So t < ret(ρr )

Assume r 6 q. Then q  ρr 6 q.

By postorder lemma, ret(ρr ) < ret(q).
Case 1: ca(ρr ) < ret(ρr ) < ca(q) ≤ t < ret(q). Done.
Case 2: ca(q) < ca(ρr ) ≤ ca(r) < ret(ρr ) < ret(q).
Since at time t we are executing dfs(q), we have
ret(ρr ) < t ≤ ret(q).
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Implementing the oracle

Lemma
Asume the oracle is asked at time t whether r  q.
The answer is “yes” iff t < ret(ρr ).

Idea
Recall ca(r) ≤ t .
At time ret(ρ) removes all nodes from ρ’s SCC from Rots
and Nonroots.
So r stays in Stack exactly during the interval
[ca(r), ret(root(t))], and therefore:

t < ret(ρr ) iff r ∈ Roots ∪ Nonroots at time t .
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Couvrer and Gabow’s algorithm [C99,G00]

1 GCG(q)
2 push(q, Roots);
3 for each transition q → r
4 if r not yet explored then GCG(r )
5 elseif r ∈ Roots ∪ Nonroots then
6 repeat
7 s :=pop(Roots); push(Nonroots);
8 if s is accepting report “nonempty”
9 until ca(s) ≤ ca(r);
10 push(s, Roots); pop(Nonroots)
11 if top(Roots) = q then
12 pop(Roots);
13 while ca(top(Nonroots)) > ca(q)
14 pop(Nonroots)
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Extension to generalized Büchi automata

Store for each state q ∈ Roots a subset q.acc of accepting
sets, maintaining the following invariant:

q.acc contains all the accepting sets intersecting q’s SCC
in the part of the graph explored so far.

When GC(q) pops a cycle, add all the acc’s of the popped
states to q.acc.
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Store for each state q ∈ Roots a subset q.acc of accepting
sets, maintaining the following invariant:

q.acc contains all the accepting sets intersecting q’s SCC
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1 EGC(q)
2 push(q, Roots);
3 q.acc := accepting sets containing q;
4 for each transition q → r
5 if r not yet explored then EGC(r )
6 elseif r ∈ Roots ∪ Nonroots then
7 repeat
8 s :=pop(Roots); push(s, Nonroots);
9 q.acc := q.acc ∪ s.acc
10 until ca(s) ≤ ca(r);
11 push(s, Roots); pop(Nonroots);
12 if q.acc = all accepting sets report “nonempty”
13 if q = top(Roots) then
14 pop(Roots);
15 while ca(top(Nonroots)) > ca(q)
16 pop(Nonroots)
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Couvreur’s observation [C99]

The SCC of a root can also be determined as follows:
Introduce one extra bit bq for evey state q. Initially bq = 0.
For every root ρ: at time ret(ρ) conduct a DFS to set to 1
the bits of all states reachable from ρ.
The set of states that had to be flipped constitute ρ’s SCC.

Gets rid of Nonroots, but requires one extra DFS.
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End of the story? No!

Černá and Pelánek’s observation [ČP03]
Many LTL specifications are translated into weak Büchi
automata.
The four-colour algorithm without the second search is
correct for weak automata.
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End of the story? No!

Černá and Pelánek’s observation [ČP03]
Many LTL specifications are translated into weak Büchi
automata.
The four-colour algorithm without the second search is
correct for weak automata.

Schwoon and E. [SE05]
The four-colour algorithm without the second searches is
optimal for weak automata.
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End of the story?

Nested-DFS SCC-based
Time 2 post ops 1/2 post op

Space 2 bits 2/1 numbers
Optimal Only for WBA Yes

Ext. to GBA No Yes
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End of the story?

Nested-DFS SCC-based
Time 2 post ops 1/2 post op

Space 2 bits 2/1 numbers
Optimal Only for WBA Yes

Ext. to GBA No Yes

Practical relevance of differences in space complexity
Small when state descriptors explicitely stored.
(state descriptors are often dozens of bytes long)
Large when state-hashing is applied.
(one or two bits for storing a state)
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Open questions

Are there optimal algorithms requiring only a constant
number of additional bits per state?

Are there algorithms for GBA requiring only a constant
number of additional bits per state?
Can a shortest counterexample be computed in linear
time?
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Are there algorithms for GBA requiring only a constant
number of additional bits per state?
Can a shortest counterexample be computed in linear
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Universal search
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Introduced by Levin.

Used here as a theoretical justification of the need for
going beyond Big-Oh analysis.
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Introduced by Levin.
Used here as a theoretical justification of the need for
going beyond Big-Oh analysis.

Intuitively . . .

Let A[x ] be an algorithm computing F (x) in f (n) time.
A is optimal for F if no other algorithm computes F in
o(f (n)) time.
We give a universal algorithm that is optimal for every F .
Corollary: if constants don’t matter we are all useless!
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A bit more formally . . .

Fix a formal system (i.e., ZF).
A function is provably computable if some algorithm
computes it and the algorithm’s correctness is a theorem of
the system.
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A bit more formally . . .

Fix a formal system (i.e., ZF).
A function is provably computable if some algorithm
computes it and the algorithm’s correctness is a theorem of
the system.

Theorem (Levin)

There is an algorithm U[F , x ] such that U[F ,−] is optimal
for every provably computable function F .
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A non-optimal algorithm U1[F ,−]

We describe first an obviously correct algorithm U1[F ,−].
On input x , U1[F ,−] behaves as follows:

U1[F ,−] enumerates all pairs Π = (P, D), where P
program and D derivation of the formal system.
Let Π1,Π2,Π3 . . . be this enumeration.
For every Πi = (Pi , Di): U1[F ,−] checks if Di is a proof that
Pi computes F . If so, U1[F ,−] computes Pi [x ] and stops.
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A non-optimal algorithm U1[F ,−]

We describe first an obviously correct algorithm U1[F ,−].
On input x , U1[F ,−] behaves as follows:

U1[F ,−] enumerates all pairs Π = (P, D), where P
program and D derivation of the formal system.
Let Π1,Π2,Π3 . . . be this enumeration.
For every Πi = (Pi , Di): U1[F ,−] checks if Di is a proof that
Pi computes F . If so, U1[F ,−] computes Pi [x ] and stops.

The algorithm U[F ,−]

U[F , x ] dovetails the computations of U1[F ,−]. It spends:
every second step on Π1;
every second step of the remaining ones on Π2;
every second step of the remaining ones on Π3, etc.
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Claim
If P runs in f (n) time, then U[F ,−] runs in O(f (n)) time.
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Claim
If P runs in f (n) time, then U[F ,−] runs in O(f (n)) time.

Proof idea:
Let i be the smallest index such that Pi = P and Di proves that
P computes F . (Observe: i independent of x !)

Then U[F ,−] terminates on input x after executing f (x) steps
of Πi , or earlier.
Total number of steps executed by U[F ,−] on x :

Steps spent on Πi ,Πi−1, . . . ,Π1:
f (x) + 2f (x) + 22f (x) + . . . + 2i f (x) = (2i+1 − 1)f (x)

Steps spent on Πi+1,Πi+2, . . .:
1
2 f (x) + 1

4 f (x) + . . . + 1 ≤ f (x) = f (x)

So U[F ,−] takes at most 2i+1 · f (x) = O(f (x)) steps.
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Conclusions

Going beyond Big-Oh analysis in verification is important.
It is not only about heuristics and hacking: good theory is
waiting for us there.
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