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• Deaf Black Ninjas meet
at a Zen garden in the
dark to attack a castle

• They’ll only attack if at
least 100 ninjas show up

• How can they find out?
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Ninjas are told to carry a purse with one pebble, start
wandering randomly around the garden, and proceed as
follows:

• When two ninjas bump into each other, one of them
gives the other all their pebbles.

If at least 100 ninjas, some ninja eventually collects at
least 100 pebbles→ knows that at least 100 ninjas.

• Ninjas who know they are at least 100 spread the
word.
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Protocol for: At least 4 ninjas?

• Each ninja is in a
state of {0, 1, 2, 3, 4}

• Initially all ninjas in
state 1

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4
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Population protocols Angluin, Aspnes et al. PODC’04

Population protocols: formal model to describe
swarms of mobile agents that interact randomly
to decide a property of their initial configuration

Since the late 00s: model of natural computation.

Agents→ atoms/molecules

Chemical Reaction Networks
CH4 + 2 O2 → CO2 + 2 H2O



An NSF Expedition in Computing (2008-2018)
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• Opinions: O : Q→ { , }

• Initial states: I ⊆ Q
• Transitions: T ⊆ Q2 × Q2

• Configurations: Q→ N

• Initial configurations: I→ N
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Reachability graph for an initial configuration

Reachability graph for
1 1 1 1

:
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Markov chain for an initial configuration

Underlying Markov chain:
(pairs of agents are picked uniformly at random)
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Runs

Run : infinite path from initial configuration
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Predicate decided (computed) by a protocol

Protocol decides φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C reach
stable consensus φ(C) with probability 1.

C0

0 0

All agree to

C1

1 1

All agree to

C2

0

All agree to

. . .



Predicate decided (computed) by a protocol

Protocol decides φ : InitC → {0, 1}:
for every C ∈ InitC , the runs starting at C reach
stable consensus φ(C) with probability 1.

Our protocol decides the predicate x ≥ 4



The quest for succinct protocols

Protocol for x ≥ c

• States: {0, 1, 2, . . . , c}
→ c + 1 states

• Initially, all agents
in state 1

• (m,n) 7→ (m+ n,0)
if m+ n < c

• (m,n) 7→ (c, c)
if m+ n ≥ c

Exponentially many states

in log c, the length of x ≥ c

Can we do better?

State complexity of x ≥ c:
minimal number of states

of a protocol deciding it.
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• State→ current species of the molecule
• Transition→ chemical reaction

CH4 + 2O2 → CO2 + 2H2O

(A, B, B) 7→ (C, D, D)
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Why care about state complexity?

Color should change when the
number of molecules in the flask
reaches c.

We need to implement a protocol
for x ≥ c.

Avogadro’s number is ∼ 6× 1023,
so we need the protocol for c ∼ 260.

But in chemical reaction networks

# states = # chemical species

We need 260 species.
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• States: {0, 1, 2, . . . , 2k}
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if m+ n < 2k
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Is O(log log c) possible?
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Initially ninjas are blue or red.

Question to be decided: same number of blue and red ninjas?
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blue-red ninjas, “neutralizing them”, until no such pairs left.

Leader states: = More
blue

= Tie = More
red

Ninja states:
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A protocol with a leader for x = y

Transitions:
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firing sequence leading from s to t has lengthΘ(22n)



The quest for succinct protocols

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with a leader and
O(log log c) states that computes x ≥ c

Proof:

For every n there is a reversible protocol with a leader and
O(n) states and transitions s.t.

• , are two states of the leader,

• is the initial state of the normal agents, and

• The leader may move from to iff the number of

is at least 22n



The quest for succinct protocols

Blondin, E., Jaax STACS’18
For infinitely many c there is a protocol with a leader and
O(log log c) states that computes x ≥ c

Proof:

For every n there is a reversible protocol with a leader and
O(n) states and transitions s.t.

• , are two states of the leader,

• is the initial state of the normal agents, and

• The leader may move from to iff the number of

is at least 22n → by reversibility it eventually will!
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How far can we go?

Czerner, E., PODC’21
Every protocol for x ≥ c, with or without leaders, has Ω(α(c))
states, where α is the inverse of (some variant of) the
Ackermann function.

Proof technique for all bounds:
Find numbers a,b such that

• protocol outputs for a; and
• if protocol outputs for a+ b, then it outputs for
a+ λb for every λ ∈ N.

Then protocol outputs for a and for a+ b, which
implies a < c ≤ a+ b.

Existence of a and a+ b derived from Dickson’s lemma.



How far can we go?

Czerner, E., PODC’21
Every protocol for x ≥ c, with or without leaders, has Ω(α(c))
states, where α is the inverse of (some variant of) the
Ackermann function.

Proof technique for all bounds:
Find numbers a,b such that

• protocol outputs for a; and
• if protocol outputs for a+ b, then it outputs for
a+ λb for every λ ∈ N.

Then protocol outputs for a and for a+ b, which
implies a < c ≤ a+ b.

Existence of a and a+ b derived from Dickson’s lemma.



How far can we go?

Czerner, E., PODC’21
Every protocol for x ≥ c, with or without leaders, has Ω(α(c))
states, where α is the inverse of (some variant of) the
Ackermann function.

Proof technique for all bounds:
Find numbers a,b such that

• protocol outputs for a; and
• if protocol outputs for a+ b, then it outputs for
a+ λb for every λ ∈ N.

Then protocol outputs for a and for a+ b, which
implies a < c ≤ a+ b.

Existence of a and a+ b derived from Dickson’s lemma.



How far can we go?

Czerner, E., PODC’21
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Czerner, E., Leroux 21, Submitted
Every leaderless protocol for x ≥ c has Ω(log log c) states.

Bound on a+ b derived from

• Rackoff’s theorem (used to obtain a clover of the set of
configurations that are a stable consensus whose
elements have double exponential norm).

• Pottier’s small basis theorem for systems of Diophantine
equations.
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Bound uses all of the above, plus some stuff I’ll leave to
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Leroux 21, arXiv
Every protocol for x ≥ c, with or without leaders, has
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Bound uses all of the above, plus some stuff I’ll leave to
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This far we’ve come

Summary
For every c, there is a leaderless protocol with O(log c) states.
For every c, every protocol, with or without a leader, has
Ω((log log c)1/3) states.
For infinitely many c, there is a protocol with a leader with
O(log log c) states.
Open question: Are there leaderless protocols with
O(log log c) states for infinitely many c ?
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Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols decide precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)
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Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols decide precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

PPs for all Presburger predicates
Using that Presburger arithmetic has quantifier
elimination, Angluin et al. proceed as follows:
1) Exhibit PPs for threshold and modulo predicates

a1x1 + · · ·+ akxk ≤ b a1x1 + · · ·+ akxk ≡ b mod c

2) Show that predicates decidable by PPs are closed
under negation and conjunction



State complexity of general Presburger predicates

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols decide precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Exponential state complexity in both

• the number of bits of the
coefficients, and

• the number of threshold and
modulo predicates.



State complexity of general Presburger predicates

Angluin, Aspnes, Eisenstat Dist. Comp.’07
Population protocols decide precisely the predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

Can polynomial state complexity
be achieved ?



A protocol for x− y ≥ 2k with O(k) states

Protocol for x ≥ 2k

States: {0, 20, . . . , 2k}

Initially: all ninjas in state 1

(2ℓ, 2ℓ) 7→ (2ℓ+1,0)
if ℓ+ 1 ≤ k

(2k,n) 7→ (2k, 2k)

A ninja that
``climbs the ladder''
attracts all others to
the top

16

8

4

2

1

0

x

2

2

2

2
-1
y

2

2

2

2

2



A protocol for x− y ≥ 2k with O(k) states

Protocol for x ≥ 2k

States: {0, 20, . . . , 2k}

Initially: all ninjas in state 1

(2ℓ, 2ℓ) 7→ (2ℓ+1,0)
if ℓ+ 1 ≤ k

(2k,n) 7→ (2k, 2k)

A ninja that
``climbs the ladder''
attracts all others to
the top

16

8

4

2

1

0

x

2

2

2

2
-1
y

2

2

2

2

2



A protocol for x− y ≥ 2k with O(k) states

Protocol for x ≥ 2k

States: {0, 20, . . . , 2k}

Initially: all ninjas in state 1

(2ℓ, 2ℓ) 7→ (2ℓ+1,0)
if ℓ+ 1 ≤ k

(2k,n) 7→ (2k, 2k)

A ninja that
``climbs the ladder''
attracts all others to
the top

16

8

4

2

1

0

x

2

2

2

2

-1
y

2

2

2

2

2



A protocol for x− y ≥ 2k with O(k) states

Protocol for x ≥ 2k

States: {0, 20, . . . , 2k}

Initially: all ninjas in state 1

(2ℓ, 2ℓ) 7→ (2ℓ+1,0)
if ℓ+ 1 ≤ k

(2k,n) 7→ (2k, 2k)

A ninja that
``climbs the ladder''
attracts all others to
the top

16

8

4

2

1

0

x

2

2

2

2

-1
y

2

2

2

2

2



A protocol for x− y ≥ 2k with O(k) states

Protocol for x−y ≥ 2k

States: {−1,0, 20, . . . , 2k}

Initially: x, y ninjas in 1,−1

(2ℓ, 2ℓ) 7→ (2ℓ+1,0)
if ℓ+ 1 ≤ k

(2k,n) 7→ (2k, 2k)
(1,−1) 7→ (0,0)

Not yet
correct!
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All predicates have polynomial state complexity

Blondin, E., Genest, Helfrich, Jaax STACS’20
Every predicate φ of quantifier-free Presburger
arithmetic can be decided by a leaderless protocol with
a polynomial number of states in |φ|.



All predicates have polynomial state complexity

Blondin, E., Genest, Helfrich, Jaax STACS’20
Every predicate φ of quantifier-free Presburger
arithmetic can be decided by a leaderless protocol with
a polynomial number of states in |φ|.

Construction
Quite sophisticated “protocol engineering” !

1) Use “up and down” ladders plus other constructions to
give PPs for threshold and modulo predicates with
polynomial number of states.

2) Given protocols with sets of states n1 and n2 for φ1 and φ2,
construct a protocol for φ1 ∧ φ2 with O(n1 + n2) states using
protocols with reversible dynamic initialization.



But are they fast ... ?

Protocol for x− y ≥ 2k

States: {−1,0, 20, . . . , 2k}
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But are they fast ... ?

Very slow!

Exponential expected
time to convergence
in the number of ninjas.

Protocols of Angluin et al.
run inO(n log n) time.
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But are they fast ... ?

Are there

fast and succinct

protocols for

all Presburger

predicates ?

16

8

4

2

1

0

x

2

2

2

2
-1
y

2

2

2

2

2



Two years and 50 pages later ...

Czerner, Guttenberg, Helfrich, E. Submitted
Every predicate φ of quantifier-free Presburger
arithmetic can be decided by a leaderless protocol

• with |φ| states,
• running inO(n) expected time
for all inputs of size Ω(|φ|).



Two years and 50 pages later ...

One of the ideas …
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Conclusion

State complexity of population protocols is a
fundamental question of distributed
computation:

• Crucial for applications in natural
computing

• Limits of collective knowledge
• Role of leaders



Conclusion

State complexity of counting predicates x ≥ c
Leaderless protocols

• Ω((log log c)1/3) and O(log c) states.
• Not known if Θ((log log c)1/3) achievable for
some family of c.



Conclusion

State complexity of counting predicates x ≥ c
Protocols with a leader

• Ω((log log c)1/3) and O(log c) states.
• Θ(log log c) for infinitely many c.



Conclusion

Succint protocols for Presburger predicates:

States Expected time

Angluin et al. ‘04 2Θ(|φ|) Θ(n log n)
Blondin et al. ‘20 poly(|φ|) 2Ω(n)

Czerner et al. ‘21 Θ(|φ|) Θ(n)
for inputs of size Ω(|φ|)



THANK YOU!


