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Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at a Zen
garden in the dark

• All Ninjas are indistinguishible, and
don’t know how many they are

• Ninjas must decide by majority to
attack or not (“don’t attack” if tie)

• How can they conduct the vote?
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Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when they
bump into each other

Each Ninja stores his current “guess” of the outcome (Yes / No).
Additionally, it is either Active or Passive. (Four possible states)

Initially: all Ninjas Active, their guesses are their own votes

Ninjas follow this protocol:

(Y A,NA) 7→ (NP,NP )
(Y A,NP ) 7→ (Y A, Y P )
(NA, Y P ) 7→ (NA,NP )
(NP, Y P ) 7→ (NP,NP )

Random bumps guarantee eventual consensus
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Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules

• people in social networks

• ... and ninjas
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Syntax

A PP-scheme is a pair (Q,∆), where

• Q is a finite set of states, and

• ∆ ⊆ (Q×Q)× (Q×Q) is a set of interactions.

Intuition:

if (q1, q2) 7→ (q′1, q
′
2) ∈ ∆ and

two agents in states q1 and q2 “meet”,

then the agents can interact and

change their states to q′1, q
′
2.

Assumption: at least one interaction for each (q1, q2)
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Semantics

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in state q.
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If several steps are possible, a scheduler chooses one

Execution: infinite sequence C0 → C1 → C2 → · · · of steps

Fair Execution: if C appears infinitely often and C → C ′

then C ′ appears infinitely often.

(Fairness constraint approximating random scheduler)
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A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• A tuple (in1, . . . , ink) of input states

• A partition of Q into true-states and false-states

Q:

A fair execution stabilizes to b ∈ {true, false} if from some point on
every agent stays within the b-states. (“All agents agree on b”).
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Computing with PPs

A PP computes the value b for input (n1, . . . , nk) if every fair
execution starting at the configuration

n1 · in1 + · · ·+ nk · ink

stabilizes to b.

in1 in2

Intuitively: all agents agree on b whatever the (random) scheduler

A PP computes P : Nn → {true, false} if it computes P (n1, . . . , nk)
for every input (n1, . . . , nk)
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Previous work

Expressive power thoroughly studied:

• PPs compute exactly the Presburger predicates
(Angluin et al. 2007)

• Probabilistic PPs (Angluin et al. 2004-2006, Chatzigiannakis and
Spirakis, 2008)

• Fault-tolerant PPs (Delporte-Gallet et al. 2006)

• Private computation in PPs (Delporte-Gallet et al. 2007)

• PPs with identifiers (Guerraoui et al. 2007)

• PPs with a leader (Angluin et al. 2008)

• Mediated PPs (Michail et al., 2011)

• Trustful PPs (Bournez et al., 2013)
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Well-specified protocols

Q: And if some fair execution does not stabilize ?

A: Then your protocol is not well specified. Repair it!

Q: And if two fair executions for the same input stabilize to different
values?

A: Then your protocol is not well specified. Repair it!

Q: And how do I know if my protocol is well specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.
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Verifying population protocols: Previous work

• Use model-checkers (SPIN, PRISM , . . . ) to verify correctness
for some inputs
Pang et al., 2008; Sun et al., 2009; Clément et al., 2011

• Use dedicated programs to check sufficient conditions for
well-specification
Chatzigiannakis et al., 2010

• Use interactive theorem provers (Coq)
Deng et al., 2009 and 2011

Not complete or not automatic.
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Main result

Are the well-specification and correctness problems
decidable?

Open for about 10 years.

Theorem: The well-specification and correctness problems
can be reduced to the reachability problem for Petri nets,
and are thus decidable.

Theorem: The reachability problem for Petri nets can be
reduced to the well-specification and correctness problems
for PPs with leader.
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State Place

Interaction Transition with
(q1, q2) 7→ (q′1, q

′
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′
2

PP-scheme Net without marking

Configuration Marking

Configuration graph Reachability graph

PP Net + infinite family of
initial markings
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Well-specification is decidable

Fact: Every fair execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph, and visits all its states infinitely often.

Fact: A PP is not well-specified iff there is an initial configuration C
and

• a bottom configuration C ′ reachable from C with agents in both
true and false states; or

• two bottom configurations C1 and C2, one “true” and one
“false”, both reachable from C.

Key Theorem: The set of bottom configurations of a PP is effectively
Presburger.
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Well-specification is decidable

Given a PP, let

• N : Petri net for the PP

• I: markings corresponding to initial configurations

• B: markings corresponding to bottom configurations

Decision procedure:

• Partition B into Btrue, Bfalse, Bneither
• Check if Bneither is reachable from I

(using reachability in Petri nets)

• Construct the net N ‖ N (two copies of N side by side).

• Construct the set I2 = {(M,M) |M ∈ I}.
• Check if Btrue × Bfalse is reachable from I2

(using reachability in Petri nets)
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