
Verification of Population Protocols

Javier Esparza

Technical University of Munich

Joint work with Pierre Ganty, Jérôme Leroux,

and Rupak Majumdar



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at a Zen
garden in the dark

• All Ninjas are indistinguishible, and
don’t know how many they are

• Ninjas must decide by majority to
attack or not (“don’t attack” if tie)

• How can they conduct the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at a Zen
garden in the dark

• All Ninjas are indistinguishible, and
don’t know how many they are

• Ninjas must decide by majority to
attack or not (“don’t attack” if tie)

• How can they conduct the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at a Zen
garden in the dark

• All Ninjas are indistinguishible, and
don’t know how many they are

• Ninjas must decide by majority to
attack or not (“don’t attack” if tie)

• How can they conduct the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at a Zen
garden in the dark

• All Ninjas are indistinguishible, and
don’t know how many they are

• Ninjas must decide by majority to
attack or not (“don’t attack” if tie)

• How can they conduct the vote?



Deaf Black Ninjas in the Dark

• Deaf Black Ninjas meet at a Zen
garden in the dark

• All Ninjas are indistinguishible, and
don’t know how many they are

• Ninjas must decide by majority to
attack or not (“don’t attack” if tie)

• How can they conduct the vote?



Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when they
bump into each other

Each Ninja stores his current “guess” of the outcome (Yes / No).
Additionally, it is either Active or Passive. (Four possible states)

Initially: all Ninjas Active, their guesses are their own votes

Ninjas follow this protocol:

(Y A,NA) 7→ (NP,NP )
(Y A,NP ) 7→ (Y A, Y P )
(NA, Y P ) 7→ (NA,NP )
(NP, Y P ) 7→ (NP,NP )

Random bumps guarantee eventual consensus



Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when they
bump into each other

Each Ninja stores his current “guess” of the outcome (Yes / No).
Additionally, it is either Active or Passive. (Four possible states)

Initially: all Ninjas Active, their guesses are their own votes

Ninjas follow this protocol:

(Y A,NA) 7→ (NP,NP )
(Y A,NP ) 7→ (Y A, Y P )
(NA, Y P ) 7→ (NA,NP )
(NP, Y P ) 7→ (NP,NP )

Random bumps guarantee eventual consensus



Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when they
bump into each other

Each Ninja stores his current “guess” of the outcome (Yes / No).
Additionally, it is either Active or Passive. (Four possible states)

Initially: all Ninjas Active, their guesses are their own votes

Ninjas follow this protocol:

(Y A,NA) 7→ (NP,NP )
(Y A,NP ) 7→ (Y A, Y P )
(NA, Y P ) 7→ (NA,NP )
(NP, Y P ) 7→ (NP,NP )

Random bumps guarantee eventual consensus



Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when they
bump into each other

Each Ninja stores his current “guess” of the outcome (Yes / No).
Additionally, it is either Active or Passive. (Four possible states)

Initially: all Ninjas Active, their guesses are their own votes

Ninjas follow this protocol:

(Y A,NA) 7→ (NP,NP )
(Y A,NP ) 7→ (Y A, Y P )
(NA, Y P ) 7→ (NA,NP )
(NP, Y P ) 7→ (NP,NP )

Random bumps guarantee eventual consensus



Deaf Black Ninjas in the Dark

Ninjas randomly wander around the garden, interacting when they
bump into each other

Each Ninja stores his current “guess” of the outcome (Yes / No).
Additionally, it is either Active or Passive. (Four possible states)

Initially: all Ninjas Active, their guesses are their own votes

Ninjas follow this protocol:

(Y A,NA) 7→ (NP,NP )
(Y A,NP ) 7→ (Y A, Y P )
(NA, Y P ) 7→ (NA,NP )
(NP, Y P ) 7→ (NP,NP )

Random bumps guarantee eventual consensus



Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules

• people in social networks

• ... and ninjas



Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules

• people in social networks

• ... and ninjas



Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules

• people in social networks

• ... and ninjas



Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules

• people in social networks

• ... and ninjas



Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules

• people in social networks

• ... and ninjas



Population protocols (PP)

Theoretical model for distributed computation

Proposed in 2004 by Angluin et al.

Designed to model collections of

identical, finite-state, and mobile agents

like

• ad-hoc networks of mobile sensors

• “soups” of interacting molecules

• people in social networks

• ... and ninjas



Syntax

A PP-scheme is a pair (Q,∆), where

• Q is a finite set of states, and

• ∆ ⊆ (Q×Q)× (Q×Q) is a set of interactions.

Intuition:

if (q1, q2) 7→ (q′1, q
′
2) ∈ ∆ and

two agents in states q1 and q2 “meet”,

then the agents can interact and

change their states to q′1, q
′
2.

Assumption: at least one interaction for each (q1, q2)



Syntax

A PP-scheme is a pair (Q,∆), where

• Q is a finite set of states, and

• ∆ ⊆ (Q×Q)× (Q×Q) is a set of interactions.

Intuition:

if (q1, q2) 7→ (q′1, q
′
2) ∈ ∆ and

two agents in states q1 and q2 “meet”,

then the agents can interact and

change their states to q′1, q
′
2.

Assumption: at least one interaction for each (q1, q2)



Semantics

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in state q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a scheduler chooses one

Execution: infinite sequence C0 → C1 → C2 → · · · of steps

Fair Execution: if C appears infinitely often and C → C ′

then C ′ appears infinitely often.

(Fairness constraint approximating random scheduler)



Semantics

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in state q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a scheduler chooses one

Execution: infinite sequence C0 → C1 → C2 → · · · of steps

Fair Execution: if C appears infinitely often and C → C ′

then C ′ appears infinitely often.

(Fairness constraint approximating random scheduler)



Semantics

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in state q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a scheduler chooses one

Execution: infinite sequence C0 → C1 → C2 → · · · of steps

Fair Execution: if C appears infinitely often and C → C ′

then C ′ appears infinitely often.

(Fairness constraint approximating random scheduler)



Semantics

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in state q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a scheduler chooses one

Execution: infinite sequence C0 → C1 → C2 → · · · of steps

Fair Execution: if C appears infinitely often and C → C ′

then C ′ appears infinitely often.

(Fairness constraint approximating random scheduler)



Semantics

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in state q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a scheduler chooses one

Execution: infinite sequence C0 → C1 → C2 → · · · of steps

Fair Execution: if C appears infinitely often and C → C ′

then C ′ appears infinitely often.

(Fairness constraint approximating random scheduler)



Semantics

Configuration: mapping C : Q→ N, where C(q) is the current
number of agents in state q.

2

q1

1

q2

0

q3

3

q4

−→ 1

q1

0

q2

1

q3

4

q4

(q1, q2) 7→ (q3, q4)

If several steps are possible, a scheduler chooses one

Execution: infinite sequence C0 → C1 → C2 → · · · of steps

Fair Execution: if C appears infinitely often and C → C ′

then C ′ appears infinitely often.

(Fairness constraint approximating random scheduler)



Population protocols (PPs)

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• A tuple (in1, . . . , ink) of input states

• A partition of Q into true-states and false-states

Q:

A fair execution stabilizes to b ∈ {true, false} if from some point on
every agent stays within the b-states. (“All agents agree on b”).



Population protocols (PPs)

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• A tuple (in1, . . . , ink) of input states

• A partition of Q into true-states and false-states

Q:
in1 in2

A fair execution stabilizes to b ∈ {true, false} if from some point on
every agent stays within the b-states. (“All agents agree on b”).



Population protocols (PPs)

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• A tuple (in1, . . . , ink) of input states

• A partition of Q into true-states and false-states

Q:
in1 in2

A fair execution stabilizes to b ∈ {true, false} if from some point on
every agent stays within the b-states. (“All agents agree on b”).



Population protocols (PPs)

A population protocol (PP) consists of

• A PP-scheme (Q,∆)

• A tuple (in1, . . . , ink) of input states

• A partition of Q into true-states and false-states

Q:
in1 in2

A fair execution stabilizes to b ∈ {true, false} if from some point on
every agent stays within the b-states. (“All agents agree on b”).



Computing with PPs

A PP computes the value b for input (n1, . . . , nk) if every fair
execution starting at the configuration

n1 · in1 + · · ·+ nk · ink

stabilizes to b.

in1 in2

Intuitively: all agents agree on b whatever the (random) scheduler

A PP computes P : Nn → {true, false} if it computes P (n1, . . . , nk)
for every input (n1, . . . , nk)



Computing with PPs

A PP computes the value b for input (n1, . . . , nk) if every fair
execution starting at the configuration

n1 · in1

+ · · ·+ nk · ink

stabilizes to b.

n1

in1 in2

Intuitively: all agents agree on b whatever the (random) scheduler

A PP computes P : Nn → {true, false} if it computes P (n1, . . . , nk)
for every input (n1, . . . , nk)



Computing with PPs

A PP computes the value b for input (n1, . . . , nk) if every fair
execution starting at the configuration

n1 · in1 + · · ·+ nk · ink

stabilizes to b.

n1

in1

n2

in2

Intuitively: all agents agree on b whatever the (random) scheduler

A PP computes P : Nn → {true, false} if it computes P (n1, . . . , nk)
for every input (n1, . . . , nk)



Computing with PPs

A PP computes the value b for input (n1, . . . , nk) if every fair
execution starting at the configuration

n1 · in1 + · · ·+ nk · ink

stabilizes to b.

n1

in1

n2

in2

Intuitively: all agents agree on b whatever the (random) scheduler

A PP computes P : Nn → {true, false} if it computes P (n1, . . . , nk)
for every input (n1, . . . , nk)



Computing with PPs

A PP computes the value b for input (n1, . . . , nk) if every fair
execution starting at the configuration

n1 · in1 + · · ·+ nk · ink

stabilizes to b.

n1

in1

n2

in2

Intuitively: all agents agree on b whatever the (random) scheduler

A PP computes P : Nn → {true, false} if it computes P (n1, . . . , nk)
for every input (n1, . . . , nk)



Computing with PPs

A PP computes the value b for input (n1, . . . , nk) if every fair
execution starting at the configuration

n1 · in1 + · · ·+ nk · ink

stabilizes to b.

n1

in1

n2

in2

Intuitively: all agents agree on b whatever the (random) scheduler

A PP computes P : Nn → {true, false} if it computes P (n1, . . . , nk)
for every input (n1, . . . , nk)



Previous work

Expressive power thoroughly studied:

• PPs compute exactly the Presburger predicates
(Angluin et al. 2007)

• Probabilistic PPs (Angluin et al. 2004-2006, Chatzigiannakis and
Spirakis, 2008)

• Fault-tolerant PPs (Delporte-Gallet et al. 2006)

• Private computation in PPs (Delporte-Gallet et al. 2007)

• PPs with identifiers (Guerraoui et al. 2007)

• PPs with a leader (Angluin et al. 2008)

• Mediated PPs (Michail et al., 2011)

• Trustful PPs (Bournez et al., 2013)



Previous work

Expressive power thoroughly studied:

• PPs compute exactly the Presburger predicates
(Angluin et al. 2007)

• Probabilistic PPs (Angluin et al. 2004-2006, Chatzigiannakis and
Spirakis, 2008)

• Fault-tolerant PPs (Delporte-Gallet et al. 2006)

• Private computation in PPs (Delporte-Gallet et al. 2007)

• PPs with identifiers (Guerraoui et al. 2007)

• PPs with a leader (Angluin et al. 2008)

• Mediated PPs (Michail et al., 2011)

• Trustful PPs (Bournez et al., 2013)



Well-specified protocols

Q: And if some fair execution does not stabilize ?

A: Then your protocol is not well specified. Repair it!

Q: And if two fair executions for the same input stabilize to different
values?

A: Then your protocol is not well specified. Repair it!

Q: And how do I know if my protocol is well specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.



Well-specified protocols

Q: And if some fair execution does not stabilize ?

A: Then your protocol is not well specified. Repair it!

Q: And if two fair executions for the same input stabilize to different
values?

A: Then your protocol is not well specified. Repair it!

Q: And how do I know if my protocol is well specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.



Well-specified protocols

Q: And if some fair execution does not stabilize ?

A: Then your protocol is not well specified. Repair it!

Q: And if two fair executions for the same input stabilize to different
values?

A: Then your protocol is not well specified. Repair it!

Q: And how do I know if my protocol is well specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.



Well-specified protocols

Q: And if some fair execution does not stabilize ?

A: Then your protocol is not well specified. Repair it!

Q: And if two fair executions for the same input stabilize to different
values?

A: Then your protocol is not well specified. Repair it!

Q: And how do I know if my protocol is well specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.



Well-specified protocols

Q: And if some fair execution does not stabilize ?

A: Then your protocol is not well specified. Repair it!

Q: And if two fair executions for the same input stabilize to different
values?

A: Then your protocol is not well specified. Repair it!

Q: And how do I know if my protocol is well specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.



Well-specified protocols

Q: And if some fair execution does not stabilize ?

A: Then your protocol is not well specified. Repair it!

Q: And if two fair executions for the same input stabilize to different
values?

A: Then your protocol is not well specified. Repair it!

Q: And how do I know if my protocol is well specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.



Well-specified protocols

Q: And if some fair execution does not stabilize ?

A: Then your protocol is not well specified. Repair it!

Q: And if two fair executions for the same input stabilize to different
values?

A: Then your protocol is not well specified. Repair it!

Q: And how do I know if my protocol is well specified?

A: That’s your problem . . .

Well-specification problem: Given a protocol, decide if it is
well-specified.

Correctness problem: Given a protocol and a Presburger predicate,
decide if the protocol is well-specified and computes the predicate.



Verifying population protocols: Previous work

• Use model-checkers (SPIN, PRISM , . . . ) to verify correctness
for some inputs
Pang et al., 2008; Sun et al., 2009; Clément et al., 2011

• Use dedicated programs to check sufficient conditions for
well-specification
Chatzigiannakis et al., 2010

• Use interactive theorem provers (Coq)
Deng et al., 2009 and 2011

Not complete or not automatic.



Verifying population protocols: Previous work

• Use model-checkers (SPIN, PRISM , . . . ) to verify correctness
for some inputs
Pang et al., 2008; Sun et al., 2009; Clément et al., 2011

• Use dedicated programs to check sufficient conditions for
well-specification
Chatzigiannakis et al., 2010

• Use interactive theorem provers (Coq)
Deng et al., 2009 and 2011

Not complete or not automatic.



Verifying population protocols: Previous work

• Use model-checkers (SPIN, PRISM , . . . ) to verify correctness
for some inputs
Pang et al., 2008; Sun et al., 2009; Clément et al., 2011

• Use dedicated programs to check sufficient conditions for
well-specification
Chatzigiannakis et al., 2010

• Use interactive theorem provers (Coq)
Deng et al., 2009 and 2011

Not complete or not automatic.



Verifying population protocols: Previous work

• Use model-checkers (SPIN, PRISM , . . . ) to verify correctness
for some inputs
Pang et al., 2008; Sun et al., 2009; Clément et al., 2011

• Use dedicated programs to check sufficient conditions for
well-specification
Chatzigiannakis et al., 2010

• Use interactive theorem provers (Coq)
Deng et al., 2009 and 2011

Not complete or not automatic.



Main result

Are the well-specification and correctness problems
decidable?

Open for about 10 years.

Theorem: The well-specification and correctness problems
can be reduced to the reachability problem for Petri nets,
and are thus decidable.

Theorem: The reachability problem for Petri nets can be
reduced to the well-specification and correctness problems
for PPs with leader.



Main result

Are the well-specification and correctness problems
decidable?

Open for about 10 years.

Theorem: The well-specification and correctness problems
can be reduced to the reachability problem for Petri nets,
and are thus decidable.

Theorem: The reachability problem for Petri nets can be
reduced to the well-specification and correctness problems
for PPs with leader.



Main result

Are the well-specification and correctness problems
decidable?

Open for about 10 years.

Theorem: The well-specification and correctness problems
can be reduced to the reachability problem for Petri nets,
and are thus decidable.

Theorem: The reachability problem for Petri nets can be
reduced to the well-specification and correctness problems
for PPs with leader.



Main result

Are the well-specification and correctness problems
decidable?

Open for about 10 years.

Theorem: The well-specification and correctness problems
can be reduced to the reachability problem for Petri nets,
and are thus decidable.

Theorem: The reachability problem for Petri nets can be
reduced to the well-specification and correctness problems
for PPs with leader.



From PPs to Petri nets

Population protocols Petri nets

State Place

Interaction Transition with
(q1, q2) 7→ (q′1, q

′
2) input places q1, q2

output places q′1, q
′
2

PP-scheme Net without marking

Configuration Marking

Configuration graph Reachability graph

PP Net + infinite family of
initial markings



From PPs to Petri nets

Population protocols Petri nets

State Place

Interaction Transition with
(q1, q2) 7→ (q′1, q

′
2) input places q1, q2

output places q′1, q
′
2

PP-scheme Net without marking

Configuration Marking

Configuration graph Reachability graph

PP Net + infinite family of
initial markings



From PPs to Petri nets

Population protocols Petri nets

State Place

Interaction Transition with
(q1, q2) 7→ (q′1, q

′
2) input places q1, q2

output places q′1, q
′
2

PP-scheme Net without marking

Configuration Marking

Configuration graph Reachability graph

PP Net + infinite family of
initial markings



From PPs to Petri nets

Population protocols Petri nets

State Place

Interaction Transition with
(q1, q2) 7→ (q′1, q

′
2) input places q1, q2

output places q′1, q
′
2

PP-scheme Net without marking

Configuration Marking

Configuration graph Reachability graph

PP Net + infinite family of
initial markings



From PPs to Petri nets

Population protocols Petri nets

State Place

Interaction Transition with
(q1, q2) 7→ (q′1, q

′
2) input places q1, q2

output places q′1, q
′
2

PP-scheme Net without marking

Configuration Marking

Configuration graph Reachability graph

PP Net + infinite family of
initial markings



From PPs to Petri nets

Population protocols Petri nets

State Place

Interaction Transition with
(q1, q2) 7→ (q′1, q

′
2) input places q1, q2

output places q′1, q
′
2

PP-scheme Net without marking

Configuration Marking

Configuration graph Reachability graph

PP Net + infinite family of
initial markings



Well-specification is decidable

Fact: Every fair execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph, and visits all its states infinitely often.

Fact: A PP is not well-specified iff there is an initial configuration C
and

• a bottom configuration C ′ reachable from C with agents in both
true and false states; or

• two bottom configurations C1 and C2, one “true” and one
“false”, both reachable from C.

Key Theorem: The set of bottom configurations of a PP is effectively
Presburger.



Well-specification is decidable

Fact: Every fair execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph, and visits all its states infinitely often.

Fact: A PP is not well-specified iff there is an initial configuration C
and

• a bottom configuration C ′ reachable from C with agents in both
true and false states; or

• two bottom configurations C1 and C2, one “true” and one
“false”, both reachable from C.

Key Theorem: The set of bottom configurations of a PP is effectively
Presburger.



Well-specification is decidable

Fact: Every fair execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph, and visits all its states infinitely often.

Fact: A PP is not well-specified iff there is an initial configuration C
and

• a bottom configuration C ′ reachable from C with agents in both
true and false states; or

• two bottom configurations C1 and C2, one “true” and one
“false”, both reachable from C.

Key Theorem: The set of bottom configurations of a PP is effectively
Presburger.



Well-specification is decidable

Fact: Every fair execution of a PP gets eventually trapped in a bottom
SCC of its configuration graph, and visits all its states infinitely often.

Fact: A PP is not well-specified iff there is an initial configuration C
and

• a bottom configuration C ′ reachable from C with agents in both
true and false states; or

• two bottom configurations C1 and C2, one “true” and one
“false”, both reachable from C.

Key Theorem: The set of bottom configurations of a PP is effectively
Presburger.



Well-specification is decidable

Given a PP, let

• N : Petri net for the PP

• I: markings corresponding to initial configurations

• B: markings corresponding to bottom configurations

Decision procedure:

• Partition B into Btrue, Bfalse, Bneither
• Check if Bneither is reachable from I

(using reachability in Petri nets)

• Construct the net N ‖ N (two copies of N side by side).

• Construct the set I2 = {(M,M) |M ∈ I}.
• Check if Btrue × Bfalse is reachable from I2

(using reachability in Petri nets)



Well-specification is decidable

Given a PP, let

• N : Petri net for the PP

• I: markings corresponding to initial configurations

• B: markings corresponding to bottom configurations

Decision procedure:

• Partition B into Btrue, Bfalse, Bneither
• Check if Bneither is reachable from I

(using reachability in Petri nets)

• Construct the net N ‖ N (two copies of N side by side).

• Construct the set I2 = {(M,M) |M ∈ I}.
• Check if Btrue × Bfalse is reachable from I2

(using reachability in Petri nets)



Well-specification is decidable

Given a PP, let

• N : Petri net for the PP

• I: markings corresponding to initial configurations

• B: markings corresponding to bottom configurations

Decision procedure:

• Partition B into Btrue, Bfalse, Bneither

• Check if Bneither is reachable from I
(using reachability in Petri nets)

• Construct the net N ‖ N (two copies of N side by side).

• Construct the set I2 = {(M,M) |M ∈ I}.
• Check if Btrue × Bfalse is reachable from I2

(using reachability in Petri nets)



Well-specification is decidable

Given a PP, let

• N : Petri net for the PP

• I: markings corresponding to initial configurations

• B: markings corresponding to bottom configurations

Decision procedure:

• Partition B into Btrue, Bfalse, Bneither
• Check if Bneither is reachable from I

(using reachability in Petri nets)

• Construct the net N ‖ N (two copies of N side by side).

• Construct the set I2 = {(M,M) |M ∈ I}.
• Check if Btrue × Bfalse is reachable from I2

(using reachability in Petri nets)



Well-specification is decidable

Given a PP, let

• N : Petri net for the PP

• I: markings corresponding to initial configurations

• B: markings corresponding to bottom configurations

Decision procedure:

• Partition B into Btrue, Bfalse, Bneither
• Check if Bneither is reachable from I

(using reachability in Petri nets)

• Construct the net N ‖ N (two copies of N side by side).

• Construct the set I2 = {(M,M) |M ∈ I}.
• Check if Btrue × Bfalse is reachable from I2

(using reachability in Petri nets)



Well-specification is decidable

Given a PP, let

• N : Petri net for the PP

• I: markings corresponding to initial configurations

• B: markings corresponding to bottom configurations

Decision procedure:

• Partition B into Btrue, Bfalse, Bneither
• Check if Bneither is reachable from I

(using reachability in Petri nets)

• Construct the net N ‖ N (two copies of N side by side).

• Construct the set I2 = {(M,M) |M ∈ I}.

• Check if Btrue × Bfalse is reachable from I2
(using reachability in Petri nets)



Well-specification is decidable

Given a PP, let

• N : Petri net for the PP

• I: markings corresponding to initial configurations

• B: markings corresponding to bottom configurations

Decision procedure:

• Partition B into Btrue, Bfalse, Bneither
• Check if Bneither is reachable from I

(using reachability in Petri nets)

• Construct the net N ‖ N (two copies of N side by side).

• Construct the set I2 = {(M,M) |M ∈ I}.
• Check if Btrue × Bfalse is reachable from I2

(using reachability in Petri nets)



And to conclude ...

• Decidability of correctness: similar argument

• Reduction from the single-zero-place reachability problem to
well-specification of PPs with leader problem

• Open problems: complexity of the promise correctness problem,
complexity for PPs without leader.

Thank You



And to conclude ...

• Decidability of correctness: similar argument

• Reduction from the single-zero-place reachability problem to
well-specification of PPs with leader problem

• Open problems: complexity of the promise correctness problem,
complexity for PPs without leader.

Thank You



And to conclude ...

• Decidability of correctness: similar argument

• Reduction from the single-zero-place reachability problem to
well-specification of PPs with leader problem

• Open problems: complexity of the promise correctness problem,
complexity for PPs without leader.

Thank You



And to conclude ...

• Decidability of correctness: similar argument

• Reduction from the single-zero-place reachability problem to
well-specification of PPs with leader problem

• Open problems: complexity of the promise correctness problem,
complexity for PPs without leader.

Thank You


